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Chapter (1) 

Force and Acceleration 

Chapter Objectives 

• To state Newton's Second Law of Motion and to define mass and weight. 

• To analyze the accelerated motion of a particle u sing the equation of motion with different 

coordinate systems. 

• To investigate central-force motion and apply it to problems in space mechanics. 

 

Newton 's Second Law of Motion  

Kinetics is a branch of dynamics that deals with the relationship between the change in 

motion of a body and the forces that cause this change. The basis for kinetics is Newton's 

second law, which states that when an unbalanced force acts on a particle, the particle will 

accelerate in the direction of the force with a magnitude that is proportional to the force. 

This law can be verified experimentally by applying a known unbalanced force F to a 

particle, and then measuring the acceleration a. Since the force and acceleration are directly 

proportional, the constant of proportionality, m, may be determined from the ratio m =F / a. 

This positive scalar m is called the mass of the particle. Being constant during any 

acceleration, m provides a quantitative measure of the resistance of the particle to a change 

in its velocity, that is its inertia. 

If the mass of the particle is m, Newton's second law of motion may be written in 

mathematical form as 

𝐹 = 𝑚𝑎                                                                                                                                             (1) 

The above equation, which is referred to as the equation of motion, is one of the most 

important formulations in mechanics. As previously stated, its validity is based solely on 

experimental evidence. In 1905, however, Albert Einstein developed the theory of relativity 

and placed limitations on the use of Newton's second law for describing general particle 

motion. Through experiments it was proven that time is not an absolute quantity as assumed 

by Newton; and as a result, the equation of motion fails to predict the exact behavior of a 

particle, especially when the particle's speed approaches the speed of light (0.3 Gm/s). 

Developments of the theory of quantum mechanics by Erwin Schrodinger and others indicate 

further that conclusions drawn from using this equation are also invalid when particles are 

the size of an atom and move close to one another. For the most part, however, these 

requirements regarding particle speed and size are not encountered in engineering problems, 

so their effects will not be considered in this book. 

Newton's Law of Gravitational Attraction. Shortly after formulating his three laws of 

motion, Newton postulated a law governing the mutual attraction between any two particles. 

In mathematical form this law can be expressed as 
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𝐹 = 𝐺
𝑚1𝑚2

𝑟2
                                                                                                                                      (2) 

Where: 

F = force of attraction between the two particles 

G = universal constant of gravitation; according to experimental evidence G = 66.73(10-12) 

m3/ (kg. s2) 

m1, m2 = mass of each of the two particles 

r = distance between the centers of the two particles 

 

In the case of a particle located at or near the surface of the earth, the only gravitational 

force having any sizable magnitude is that between the earth and the particle. This force is 

termed the "weight" and, for our purpose, it will be the only gravitational force considered. 

From Eq. (2), we can develop a general expression for finding the weight W of a particle 

having a mass ml = m. Let m2 = Me be the mass of the earth and r the distance between the 

earth's center and the particle. Then, if g = GMe/r2, we have 

W = mg 

The Equation of Motion 

When more than one force acts on a particle, the resultant force is determined by a vector 

summation of all the forces; i.e., 𝑭𝑹 = ∑𝑭. For this more general case, the equation of 

motion may be written as 

∑𝐹 = 𝑚𝑎                                                                                                                            (3) 

To illustrate application of this equation, consider the particle shown in Fig. 1(a), which has 

a mass m and is subjected to the action of two forces, Fl and F2 . We can graphically account 

for the magnitude and direction of each force acting on the particle by drawing the particle's 

free-body diagram, Fig. 1(b). Since the resultant of these forces produces the vector ma, its 

magnitude and direction can be represented graphically on the kinetic diagram, shown in 

Fig. 1(c). The equal sign written between the diagrams symbolizes the graphical equivalency 

between the free-body diagram and the kinetic diagram; i.e., ∑𝑭 = 𝒎𝒂. In particular, note 

that if 𝑭𝑹 = ∑𝑭 = 𝟎, then the acceleration is also zero, so that the particle will either remain 

at rest or move along a straight-line path with constant velocity. Such are the conditions of 

static Newton's first law of motion. 

 

Fig. 1 

𝑭 

𝑭 
a

(a)

𝑭 

𝑭 
FR=∑F ma

(c)(b)
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Equation of Motion for a System of Particles 

The equation of motion will now be extended to include a system of particles isolated within 

an enclosed region in space, as shown in Fig. 2(a). In particular, there is no restriction in the 

way the particles are connected, so the following analysis applies equally well to the motion 

of a solid, liquid, or gas system. 

At the instant considered, the arbitrary i-th particle, having a mass mi, is subjected to a 

system of internal forces and a resultant external force. The internal force, represented 

symbolically as fi, is the resultant of all the forces the other particles exert on the ith particle. 

The resultant external force Fi represents, for example, the effect of gravitational, electrical, 

magnetic, or contact forces between the ith particle and adjacent bodies or particles not 

included within the system. The free-body and kinetic diagrams for the ith particle are shown 

in Fig. 2(b). Applying the equation of motion, 

∑𝐹 = 𝑚𝑎             𝐹𝑖 + 𝑓𝑖 = 𝑚𝑖𝑎𝑖 

When the equation of motion is applied to each of the other particles of the system, similar 

equations will result. And, if all these equations are added together vectorially, we obtain 

∑𝐹𝑖 + ∑𝑓𝑖 = ∑𝑚𝑖𝑎𝑖  

 

Fig. 2 

The summation of the internal forces, if carried out, will equal zero, since internal forces 

between any two particles occur in equal but opposite collinear pairs. Consequently, only 

the sum of the external forces will remain, and therefore the equation of motion, written for 

the system of particles, becomes 

∑𝐹𝑖 = ∑𝑚𝑖𝑎𝑖                                                                                                                           (4) 

If rG is a position vector which locates the center of mass G of the particles, Fig. 13-4a, then 

by definition of the center of mass, 𝒎𝒓𝑮 = ∑𝒎𝒊𝒓𝒊, where 𝒎 = ∑𝒎𝒊 is the total mass of all 

the particles. Differentiating this equation twice with respect to time, assuming that no mass 

is entering or leaving the system, yields 
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𝑚𝑟𝐺 = ∑𝑚𝑖𝑟𝑖  

Substituting this result into Eq. 4, we obtain 

∑𝐹 = 𝑚𝑎𝐺                                                                                                                             (5) 

Hence, the sum of the external forces acting on the system of particles is equal to the total 

mass of the particles times the acceleration of its center of mass G. Since in reality all 

particles must have a finite size to possess mass, Eq. 5 justifies application of the equation 

of motion to a body that is represented as a single particle. 

 

Equations of Motion: Rectangular Coordinates 

When a particle moves relative to an inertial x, y, z frame of reference, the forces acting on 

the particle, as well as its acceleration, can be expressed in terms of their i, j, k components, 

Fig. 3. Applying the equation of motion, we have 

∑𝐹 = 𝑚𝑎;        ∑𝐹𝑥 𝑖 + ∑𝐹𝑦 𝑗 + ∑𝐹𝑧 𝑘 = 𝑚(𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘)          

For this equation to be satisfied, the respective i,j, k components on the left side must equal 

the corresponding components on the right side. 

Consequently, we may write the following three scalar equations: 

 

Fig. 3 

 

∑𝐹𝑥 = 𝑚𝑎𝑥  

∑𝐹𝑦 = 𝑚𝑎𝑦                                                                                                                              (6)  

∑𝐹𝑧 = 𝑚𝑎𝑧  

 

In particular, if the particle is constrained to move only in the x-y plane, then the first two of 

these equations are used to specify the motion. 
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Example: (1) 

The 50-kg crate shown in Fig. 4(a) rests on a horizontal surface for which the coefficient of 

kinetic friction is µk = 0.3. If the crate is subjected to a 400-N towing force as shown, 

determine the velocity of the crate in 3 s starting from rest. 

 

Fig. 4 

Solution: 

Using the equations of motion, we can relate the crate's acceleration to the force causing the 

motion. The crate's velocity can then be determined using kinematics. 

Free-Body Diagram. The weight of the crate is W = mg = 50 kg (9.81 m/s2) = 490.5 N. As 

shown in Fig. 4(b), the frictional force has a magnitude F = µk NC and acts to the left, since 

it opposes the motion of the crate. The acceleration a is assumed to act horizontally, in the 

positive x direction. There are two unknowns, namely Nc and a. 

Equations of Motion. Using the data shown on the free-body diagram, we have 

∑𝐹𝑥 = 𝑚𝑎𝑥 ;            400 cos 300 − 0.3𝑁𝐶 = 50𝑎                                                              (1) 

∑𝐹𝑦 = 𝑚𝑎𝑦;             𝑁𝐶 − 490.5 + 400 sin 300 = 0                                                         (2) 

Solving Eq. 2 for Nc, substituting the result into Eq. 1, and solving for a yields 

𝑁𝐶 = 290.5 𝑁 

𝑎 = 5.185 𝑚 𝑠2⁄  

Kinematics. Notice that the acceleration is constant, Since the applied force P is constant. 

Since the initial velocity is zero, the velocity of the crate in 3 s is 

𝑣 = 𝑣0 + 𝑎𝑐𝑡 = 0 + 5.185 × 3 = 15.6𝑚 𝑠⁄  

NOTE: We can also use the alternative procedure of drawing the crate's free-body and 

kinetic diagrams, Fig. 4(c), prior to applying the equations of motion. 

 

 

(a)

 𝟎 

 =  𝟎𝟎 

(b) (C)

a

x

y

 𝟎 

 𝟎𝟎 
  𝟎.    

𝟎.    

  

 𝟎 

 𝟎𝟎 
  𝟎.    

𝑭 = 𝟎.    

  

=
 𝟎𝒂
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Example: (2) 

A smooth 2-kg collar C, shown i n Fig. 5(a), i s attached t o a spring having a stiffness k = 3 

N/m and an unstretched length of 0.75 m. If the collar is released from rest at A, determine 

its acceleration and the normal force of the rod on the collar at the instant y = 1 m. 

Solution: 

 

Fig. 5 

Free-Body Diagram. The free-body diagram of the collar when it is located at the arbitrary 

position y is shown in Fig. 5(b). Furthermore, the collar is assumed to be accelerating so that 

"a" act downward in the positive y direction. There are four unknowns, namely, Nc, Fs, a, 

and θ. 

Equations of Motion. 

→ ∑𝐹𝑥 = 𝑚𝑎𝑥;               −𝑁𝐶 + 𝐹𝑆 cos 𝜃 = 0                                                                    (1) 

↓ ∑𝐹𝑦 = 𝑚𝑎𝑦;               19.62 + 𝐹𝑆 sin 𝜃 = 2𝑎                                                                 (2) 

From Eq. 2 it is seen that the acceleration depends on the magnitude and direction of the 

spring force. Solution for Nc and a is possible once Fs and θ are known. 

The magnitude of the spring force is a function of the stretch s of the spring; i.e., Fs = ks. 

Here the unstretched length is AB = 0.75 m, Fig. 5(a); therefore,𝒔 =  𝑩 − 𝑨𝑩 =

√𝒚 + (𝟎. 𝟕 ) − 𝟎. 𝟕 . Since k = 3 N/m, then 

𝐹𝑠 = 𝑘𝑠 = 3[√𝑦2 + (0.75)2 − 0.75]                                                                                   (3) 

From Fig. 5(a), the angle θ is related to y by trigonometry. 

tan 𝜃 =
𝑦

0.75
                                                                                                                                       (4) 

Substituting y = 1 m into Eqs. (3) and (4) yields Fs = 1.50 N and θ = 53.1°. Substituting 

these results into Eqs. (1) and (2), we obtain 

𝑁𝐶 = 0.900 𝑁 

𝑎 = 9.21 𝑚 𝑠2⁄   ↓ 
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NOTE: This is not a case of constant acceleration, since the spring force changes both its 

magnitude and direction as the collar moves downward. 

 

Solved Example 

1. The 2-lb collar C fits loosely on the smooth shaft. If the spring is unstretched when s = 

0 and the collar is given a velocity of 15 ft/s, determine the velocity of the collar when s 

= 1 ft. 

 

Data: 

𝑣0 = 15 𝑓𝑡 𝑠⁄ ,  s = 1 ft, k = 4 Ib/ft, m = 2 Ib and lo = 1 ft 

Req.      v = ?? 

Solution: 

∑𝐹𝑥 = 𝑚𝑎𝑥  

𝑣 = 𝑣0 + 𝑎𝑥𝑡 

𝑆 = 𝑆0 +
1

2
𝑎𝑥𝑡

2 

𝑣2 = 𝑣0
2 + 2𝑎𝑥𝑆 

𝐹𝑠 = 𝑠𝑝𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 = 𝑘 × ∆𝑙 

∆𝑙 = 𝑙𝑓 − 𝑙𝑜 

𝑙𝑓 = √12 + 12 = √2 = 1.41 𝑓𝑡 

∴ ∆𝑙 = 1.41 − 1 = 0.41 𝑓𝑡 

𝐹𝑠 = 4 × 0.41 = 1.64 𝐼𝑏 

Free body diagram
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𝐹𝑆 cos 45
𝑜 = 𝑚𝑎𝑥 

∴ 𝑎𝑥 =
𝐹𝑆 cos 45

𝑜

𝑚
=
1.64 cos 45𝑜

2
= 0.58 𝑓𝑡 𝑠2⁄  

∵ 𝑣2 = 𝑣0
2 + 2𝑎𝑥𝑆 

∴ 𝑣 = √𝑣0
2 + 2𝑎𝑥𝑆 = √152 + 2 × 0.58 × 1 = 15.04 𝑓𝑡 𝑠⁄  

 

2. The spring has a stiffness k = 200 N/m and is unstretched when the 25-kg block is at A. 

Determine the acceleration of the block when s = 0.4 m. The contact surface between the 

block and the plane and the coeff. of friction μ = 0.3. 

 

Data: F = 100 N, k = 200 N/m, m = 25 kg, S = 0.4 m and μ = 0.3 

Req.: a = ?? 

Solution: 

∑𝐹𝑥 = 𝑚𝑎𝑥  

𝐹𝑆 = 𝑘∆𝑙 

∆𝑙 = 𝑙𝑓 − 𝑙𝑜 

𝑙𝑓 = √0.32 + 0.42 = 0.5 𝑚 

∴ ∆𝑙 = 0.5 − 0.3 = 0.2 𝑚 

∴ 𝐹𝑠 = 200 × 0.2 = 40 𝑁 

 

∑𝐹𝑦 = 𝑚𝑎𝑦 = 0  

−𝑊 − 𝐹𝑆 sin 36.9 + 𝑁 = 0 

𝑁 = 𝑊 + 𝐹𝑆 sin 36.9 = (25 × 9.81) + (40 sin 36.9) = 269.3 𝑁 

Free body diagram
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∴ 𝐹𝑓 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 =  𝜇𝑁 = 0.3 × 269.3 = 80.8 𝑁 

∑𝐹𝑥 = 𝑚𝑎𝑥  

𝑎𝑥 =
∑𝐹𝑥

𝑚
=

100−𝐹𝑆 cos 36.9−𝐹𝑓

𝑚
=

100−40 cos36.9−80.8

25
= −0.511⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  𝑚 𝑠2⁄ =

0.511⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑚 𝑠2⁄    
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Fundamental Problems 

3. A spring of stiffness k = 500 N/m is mounted against the 10-kg block. If the block is 

subjected to the force of F = 500 N, determine its velocity at s = 0.5 m. When s = 0, the 

block is at rest and the spring is uncompressed. The contact surface is smooth. 

 

4. The spring has a stiffness k = 200 N/m and is unstretched when the 25-kg block is at A. 

Determine the acceleration of the block when s = 0.4 m. The contact surface between the 

block and the plane is smooth. 

 

 

5. The 2-lb collar C fits loosely on the smooth shaft. If the spring is unstretched when s = 

0 and the collar is given a velocity of 15 ft/s, determine the velocity of the collar when s 

= 1 ft. 
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Equations of Motion: Normal and Tangential 

Coordinates 

When a particle moves along a curved path which is known, the equation of motion for the 

particle may be written in the tangential, normal, and binormal directions, Fig. 6. Note that 

there is no motion of the particle in the binormal direction, since the particle is constrained 

to move along the path. We have 

∑𝐹 = 𝑚𝑎;        ∑𝐹𝑡 𝑢𝑡 + ∑𝐹𝑛 𝑢𝑛 + ∑𝐹𝑏 𝑢𝑏 = 𝑚𝑎𝑡 +𝑚𝑎𝑛 

 

Fig. 6 

This equation is satisfied provided 

∑𝐹𝑡 = 𝑚𝑎𝑡  

∑𝐹𝑛 = 𝑚𝑎𝑛                                                                                                                              (7)  

∑𝐹𝑏 = 0  

Recall that at (= dv/ dt) represents the time rate of change in the magnitude of velocity. So 

if ∑𝑭𝒕 acts in the direction of motion, the particle's speed will increase, whereas if it acts in 

the opposite direction, the particle will slow down. Likewise, an (= v2 / ρ) represents the time 

rate of change in the velocity's direction. It is caused by ∑𝑭𝒏, which always acts in the 

positive n direction, i.e., toward the path's center of curvature. From this reason it is often 

referred to as the centripetal force. 

 

Example: (3) 

The 3-kg disk D is attached to the end of a cord as shown in Fig. 7(a). The other end of the 

cord is attached to a ball-and-socket joint located at the center of a platform. If the platform 

rotates rapidly, and the disk is placed on it and released from rest as shown, determine the 

time it takes for the disk to reach a speed great enough to break the cord. The maximum 

tension the cord can sustain is 100 N, and the coefficient of kinetic friction between the disk 

and the platform is µk = 0.1. 
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Fig. 7 

Solution: 

Free-Body Diagram. The frictional force has a magnitude F = µk ND = 0.l ND and a sense 

of direction that opposes the relative of the disk with respect to the platform. It is this force 

that gives the disk a tangential component of acceleration causing v to increase, thereby 

causing T to increase until it reaches 100 N. The weight of the disk is W = 3(9.81) = 29.43 

N. Since an can be related to v, the unknowns are ND, at, and v. 

Equations of Motion. 

∑𝐹𝑛 = 𝑚𝑎𝑛;           𝑇 = 3 (
𝑣2

1
)                                                                                              (1) 

∑𝐹𝑡 = 𝑚𝑎𝑡;            0.1𝑁𝐷 = 3𝑎𝑡                                                                                          (2) 

∑𝐹𝑏 = 0;                 𝑁𝐷 − 29.43 = 0                                                                                   (3) 

Setting T = 100 N, Eq. (1) can be solved for the critical speed vcr of the disk needed to break 

the cord. Solving all the equations, we obtain 

𝑁𝐷 = 29.43 

𝑎𝑡 = 0.981𝑚 𝑠2⁄  

𝑣𝑐𝑟 = 5.77𝑚 𝑠⁄  

Kinematics. Since at is constant, the time needed to break the cord is 

𝑣𝑐𝑟 = 𝑣0 + 𝑎𝑡𝑡 

∴ 5.77 = 0 + (0.981)𝑡 

∴ 𝑡 = 5.89 𝑠 
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Central-Force Motion and Space Mechanics 
 

If a particle is moving only under the influence of a force having a line of action which is 

always directed toward a fixed point, the motion is called central-force motion. This type of 

motion is commonly caused by electrostatic and gravitational forces.  

∑𝐹𝑟 = 𝑚𝑎𝑟  

∑𝐹𝜃 = 𝑚𝑎𝜃                                                                                                                              (8)  

∑𝐹𝑧 = 𝑚𝑎𝑧  

 

Fig. 8 

In order to analyze the motion, we will consider the particle P shown in Fig. 8(a), which has 

a mass m and is acted upon only by the central force F. The free-body diagram for the particle 

is shown in Fig. 8(b). Using polar coordinates (r, θ), the equations of motion, Eqs. 8, become 

∑𝐹𝑟 = 𝑚𝑎𝑟            ∴ −𝐹 = 𝑚 [
𝑑2𝑟

𝑑𝑡2
− 𝑟 (

𝑑𝜃

𝑑𝑡
)
2

] 

                                                                                                                                             (9) 

∑𝐹𝜃 = 𝑚𝑎𝜃          ∴ 0 = 𝑚(𝑟
𝑑2𝑟

𝑑𝑡2
− 2

𝑑𝑟

𝑑𝑡

𝑑𝜃

𝑑𝑡
) 

 

The second of these equations may be written in the form 

1

𝑟
[
𝑑

𝑑𝑡
(𝑟2

𝑑𝜃

𝑑𝑡
)] = 0 

so that integrating yields 

𝑟2
𝑑𝜃

𝑑𝑡
= ℎ                                                                                                                            (10) 

Here h is the constant of integration. 

From Fig. 8(a) notice that the shaded area described by the radius r, as r moves through an 

angle dθ, is dA= r2dθ. If the areal velocity is defined as 

(a) (b)
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𝑑𝐴

𝑑𝑡
=

1

2
𝑟2

𝑑𝜃

𝑑𝑡
=

ℎ

2
                                                                                                                  (11) 

then it is seen that the areal velocity for a particle subjected to central force motion is 

constant. In other words, the particle will sweep out equal segments of area per unit of time 

as it travels along the path. To obtain the path of motion, r = f(θ), the independent variable t 

must be eliminated from Eqs. (9). Using the chain rule of calculus and Eq. (10), the time 

derivatives of Eqs. (9) may be replaced by 

𝑑𝑟

𝑑𝑡
−
𝑑𝑟

𝑑𝜃

𝑑𝜃

𝑑𝑡
−
ℎ

𝑟2
𝑑𝑟

𝑑𝜃
 

𝑑2𝑟

𝑑𝑡2
=

𝑑

𝑑𝑡
(
ℎ

𝑟2
𝑑𝑟

𝑑𝜃
) =

𝑑

𝑑𝜃
(
ℎ

𝑟2
𝑑𝑟

𝑑𝜃
)
𝑑𝜃

𝑑𝑡
= [

𝑑

𝑑𝜃
(
ℎ

𝑟2
𝑑𝑟

𝑑𝜃
)]

ℎ

𝑟2
 

 

Substituting a new dependent variable (xi) ξ = l/r into the second equation, we have 

𝑑2𝑟

𝑑𝑡2
= −ℎ2𝜉2

𝑑2𝜉

𝑑𝜃2
 

Also, the square of Eq. (10) becomes 

(
𝑑𝜃

𝑑𝑡
)
2

= ℎ2𝜉4 

Substituting these two equations into the first of Eqs. (9) yields 

−ℎ2𝜉2
𝑑2𝜉

𝑑𝜃2
− ℎ2𝜉3 = −

𝐹

𝑚
  

Or 

𝑑2𝜉

𝑑𝜃2
+ 𝜉 =

𝐹

𝑚ℎ2𝜉2
                                                                                                                  (12) 

This differential equation defines the path over which the particle travels when it is subjected 

to the central force F. 

 

Fig. 9 
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For application, the force of gravitational attraction will be considered. Some common 

examples of central-force systems which depend on gravitation include the motion of the 

moon and artificial satellites about the earth, and the motion of the planets about the sun. As 

a typical problem in space mechanics, consider the trajectory of a space satellite or space 

vehicle launched into free-flight orbit with an initial velocity V0, Fig. 9. It will be assumed 

that this velocity is initially parallel to the tangent at the surface of the earth, as shown in the 

figure.t Just after the satellite is released into free flight, the only force acting on it is the 

gravitational force of the earth. (Gravitational attractions involving other bodies such as the 

moon or sun will be neglected, since for orbits close to the earth their effect is small in 

comparison with the earth's gravitation.) According to Newton's law of gravitation, force F 

will always act between the mass centers of the earth and the satellite, Fig. 9. From Eq. (2), 

this force of attraction has a magnitude of 

𝐹 = 𝐺
𝑀𝑒𝑚

𝑟2
 

Where: Me and m represent the mass of the earth and the satellite, respectively, G is the 

gravitational constant, and r is the distance between the mass centers. To obtain the orbital 

path, we set 𝝃 =  /𝒓 in the foregoing equation and substitute the result into Eq. (12). We 

obtain 

𝑑2𝜉

𝑑𝜃2
+ 𝜉 =

𝐺𝑀𝑒

ℎ2
                                                                                                                  (13) 

This second-order differential equation has constant coefficients and is nonhomogeneous. 

The solution is the sum of the complementary and particular solutions given by 

𝜉 =
1

𝑟
= 𝐶 cos(𝜃 − 𝜙) +

𝐺𝑀𝑒

ℎ2
                                                                                          (14) 

This equation represents the free-flight trajectory of the satellite. It is the equation of a conic 

section expressed in terms of polar coordinates. 

 

Fig. 10 
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A geometric interpretation of Eq. (14) requires knowledge of the equation for a conic section. 

As shown in Fig. 10, a conic section is defined as the locus of a point P that moves in such 

a way that the ratio of its distance to a focus, or fixed-point F, to its perpendicular distance 

to a fixed line DD called the directrix, is constant. This constant ratio will be denoted as e 

and is called the eccentricity. By definition 

𝑒 =
𝐹𝑃

𝑃𝐴
 

From Fig. 10, 

𝐹𝑃 = 𝑟 = 𝑒(𝑃𝐴) = 𝑒[𝑝 − 𝑟 cos(𝜃 − 𝜙)] 

Or 

1

𝑟
=
1

𝑝
cos(𝜃 − 𝜙) +

1

𝑒𝑝
 

Comparing this equation with Eq. 14, it is seen that the fixed distance from the focus to the 

directrix is 

𝑝 =
1

𝐶
                                                                                                                                  (15) 

And the eccentricity of the conic section for the trajectory is 

𝑒 =
𝐶ℎ2

𝐺𝑀𝑒
                                                                                                                              (16) 

Provided the polar angle 𝜽 is measured from the x axis (an axis of directrix symmetry since 

it is perpendicular to the directrix), the angle 𝝓 is zero, Fig. 10, and therefore Eq. (14) 

reduces to 

1

𝑟
= 𝐶 cos 𝜃 +

𝐺𝑀𝑒

ℎ2
                                                                                                              (17) 

The constants h and C are determined from the data obtained for the positon and velocity of 

the satellite at the end of the power-flight trajectory. For example, if the initial height or 

distance to the space vehicle is ro, measured from the center of the earth, and its initial speed 

is vo at the beginning of its free flight, Fig. 11, then the constant h may be obtained from Eq. 

10. When 𝜽 = 𝝓 = 𝟎°, the velocity Vo has no radial component; therefore, 𝒗𝟎 =

 𝒓𝟎(𝒅𝜽/𝒅𝒕), so that 

ℎ = 𝑟0
2
𝑑𝜃

𝑑𝑡
 

or 

ℎ = 𝑟0𝑣0                                                                                                                             (18) 

To determine C, use Eq. (17) with θ = 0°, r = ro, and substitute Eq. (18) for h: 

𝐶 =
1

𝑟0
(1 −

𝐺𝑀𝑒

𝑟0𝑣0
2)                                                                                                               (19) 

The equation for the free-flight trajectory therefore becomes 
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1

𝑟
=

1

𝑟0
(1 −

𝐺𝑀𝑒

𝑟0𝑣0
2) cos 𝜃 +

𝐺𝑀𝑒

𝑟0
2𝑣0

2                                                                                            (20) 

The type of path traveled by the satellite is determined from the value of the eccentricity of 

the conic section as given by Eq. 16. If 

𝑒 = 0     𝑓𝑟𝑒𝑒 − 𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑖𝑠 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 

  𝑒 = 1     𝑓𝑟𝑒𝑒 − 𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 

                                                                                                                                           (21) 

𝑒 < 1     𝑓𝑟𝑒𝑒 − 𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 

𝑒 > 1     𝑓𝑟𝑒𝑒 − 𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑖𝑠 𝑎 ℎ𝑦𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 

 

Parabolic Path. Each of these trajectories is shown in Fig. 11. From the curves it is seen 

that when the satellite follows a parabolic path, it is "on the border" of never returning to its 

initial starting point. The initial launch velocity, vo, required for the satellite to follow a 

parabolic path is called the escape velocity. The speed, ve, can be determined by using the 

second of Eqs. (21), e = 1, with Eqs. (16), (18), and (19). It is left as an exercise to show that 

𝑣𝑒 = √
2𝐺𝑀𝑒

𝑟0
                                                                                                                                   (22) 

Circular Orbit. The speed vc required to launch a satellite into a circular orbit can be found 

using the first of Eqs. (21), e = 0. Since e is related to h and C, Eq. (16), C must be zero to 

satisfy this equation (from Eq. (18), h cannot be zero); and therefore, using Eq. (19), we have 

𝑣𝑒 = √
𝐺𝑀𝑒

𝑟0
                                                                                                                                      (23) 

Provided ro represents a minimum height for launching, in which frictional resistance from 

the atmosphere is neglected, speeds at launch which are less than vc will cause the satellite 

to reenter the earth's atmosphere and either burn up or crash, Fig. 11. 

 

Fig. 11 
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Elliptical Orbit. All the trajectories attained by planets and most satellites are elliptical, 

Fig. 12. For a satellite's orbit about the earth, the minimum distance from the orbit to the 

center of the earth 0 (which is located at one of the foci of the ellipse) is rp and can be found 

using Eq. 13-22 with θ = 0°. Therefore; 

 

Fig. 12 

 

𝑟𝑃 = 𝑟0                                                                                                                               (24) 

This minimum distance is called the perigee of the orbit. The apogee or maximum distance 

ra can be found using Eq. (20) with θ = 1 80°. Thus, 

𝑟𝑃 =
𝑟0

(2𝐺𝑀𝑒 𝑟0𝑣0
2⁄ ) − 1

                                                                                                                (25) 

With reference to Fig. 12, the half-length of the major axis of the ellipse is 

𝑎 =
𝑟𝑃 + 𝑟𝑎
2

                                                                                                                                       (26) 

Using analytical geometry, it can be shown that the half length of the minor axis is 

determined from the equation 

𝑏 = √𝑟𝑃𝑟𝑎                                                                                                                                         (27) 

Furthermore, by direct integration, the area of an ellipse is 

𝐴 = 𝜋𝑎𝑏 =
𝜋

2
(𝑟𝑃 + 𝑟𝑎)√𝑟𝑃𝑟𝑎                                                                                                       (28) 

The areal velocity has been defined by Eq. (11), dA/dt = h/2. Integrating yields, A = hT /2, 

where T is the period of time required to make one orbital revolution. From Eq. (28), the 

period is 

𝑇 =
𝜋

ℎ
(𝑟𝑃 + 𝑟𝑎)√𝑟𝑃𝑟𝑎                                                                                                                     (29) 

Example: (4) 
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A satellite is launched 600 km from the surface of the earth, with an initial velocity of 30 

Mm/h acting parallel to the tangent at the surface of the earth, Fig. 13. Assuming that the 

radius of the earth is 6378 km and that its mass is 5.976(1024) kg, determine (a) the 

eccentricity of the orbital path, and (b) the velocity of the satellite at apogee. 

 

Fig. 13 

Solution: 

Part (a). The eccentricity of the orbit is obtained using Eq. (16). The constants h and C are 

first determined from Eqs. (18) and (19). Since 

 

rp = r0 = 6378 km + 600 km = 6.978(106) m 

vo = 30 Mm/h = 8333.3 m/s 

h = rpvo = 6.978(106) (8333.3) = 58.15(109) m2/s 

𝐶 =
1

𝑟𝑃
(1 −

𝐺𝑀𝑒

𝑟𝑃𝑣0
2) =

1

6.978(106)
{1 −

66.73(10−12)[5.976(1024)]

6.978(106)(8333.3)2
} = 25.4(10−9)𝑚−1 

Hence, 

𝑒 =
𝐶ℎ2

𝐺𝑀𝑒
=

2.54(10−8)[58.15(109)]2

66.73(10−12)[5.976(1024)]
= 0.215 < 1 

From Eq. (20), observe that the orbit is an ellipse. 

Part (b). If the satellite were launched at the apogee A shown in Fig. 13, with a velocity vA, 

the same orbit would be maintained provided 

h = rp.vo = ra.vA = 58.15 (109) m2/s 

Using Eq. (25), we have 

𝑟𝑎 =
𝑟𝑃

(2𝐺𝑀𝑒 𝑟𝑃𝑣0
2⁄ ) − 1

=
6.978(106)

2[66.73(10−12)][5.976(1024)]
6.978(106)(8333.3)2

− 1
= 10.804(106) 

 𝟎𝟎  𝒎

𝒓 𝒓𝒂

𝒗𝟎 =  𝟎  𝒎/ 

𝒗𝑨

𝑨
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Thus, 

𝑣𝐴 =
ℎ

𝑟𝑎
=
58.15 (109) 

10.804(106)
= 5382.2𝑚 𝑠⁄ = 19.4 𝑀𝑚/ℎ 

NOTE: The farther the satellite is from the earth, the slower it moves, which is to be expected 

since h is constant. 
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Chapter (2) 

Work and Energy 

CHAPTER OBJECTIVES 

• To deve lop the principle of work and energy and apply it to solve problems that involve 

force, velocity, and displacement. 

• To study p roblems that involve power and efficiency. 

• To introduce the concept of a conservative force and apply the theorem of conservation of 

energy to solve kinetic probl ems. 

The Work of a Force 

In this chapter, we will analyze motion of a particle using the concepts of work and energy. 

The resulting equation will be useful for solving problems that involve force, velocity, and 

displacement. Before we do this; however, we must first define the work of a force. 

Specifically, a force F will do work on a particle only when the particle undergoes a 

displacement in the direction of the force. For example, if the force F in Fig. 14 causes the 

particle to move along the path s from position r to a new position r', the displacement is 

then dr = r' - r. The magnitude of dr is ds, the length of the differential segment along the 

path. If the angle between the tails of dr and F is θ, Fig. 14, then the work done by F is a 

scalar quantity, defined by 

𝑑𝑈 = 𝐹𝑑𝑠 cos 𝜃 

 

Fig. 14 

 

Work of a Spring Force. 

If an elastic spring is elongated a distance ds, Fig. 15(a), then the work done by the force 

that acts on the attached particle is dU = - Fsds = -ks ds. The work is negative since Fs acts 

in the opposite sense to ds. If the particle displaces from Sl to S2, the work of Fs is then 
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𝑈1−2 = ∫ 𝐹𝑆𝑑𝑠

𝑆2

𝑆1

= ∫ −𝑘𝑆𝑑𝑠

𝑆2

𝑆1

 

∴ 𝑈1−2 = −[
1

2
𝑘𝑠2
2 −

1

2
𝑘𝑠1
2 ]                                                                                                          (30) 

 

Fig. 15 

This work represents the trapezoidal area under the line Fs = kS, Fig. 15(b). 

A mistake in sign can be avoided when applying this equation if one simply notes the 

direction of the spring force acting on the particle and compares it with the sense of direction 

of displacement of the particle if both are in the same sense, positive work results; if they 

are opposite to one another, the work is negative. 

Conservative Forces and Potential Energy 
 

Conservative Force. If the work of a force is independent of the path and depends only on 

the force's initial and final positions on the path, then we can classify this force as a 

conservative force. Examples of conservative forces are the weight of a particle and the force 

developed by a spring. The work done by the weight depends only on the vertical of the 

weight, and the work done by a spring force depends only on the spring's elongation or 

compression. 

In contrast to a conservative force, consider the force of friction exerted on a sliding object 

by a fixed surface. The work done by the frictional force depends on the path-the longer the 

path, the greater the work. Consequently, frictional forces are non-conservative. The work 

is dissipated from the body in the form of heat. 

 

 

 

 

 

 

(a) (b)
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Example: (5) 

A smooth 2-kg collar, shown in Fig. 14(a), fits loosely on the 

vertical shaft. If the spring is unstretched when the collar is 

in the position A, determine the speed at which the collar is 

moving when y = 1 m, if (a) it is released from rest at A, and 

(b) it is released at A with an upward velocity vA = 2 m/s. 

Solution: 

(a) It is released from rest at A 

At point A: 

𝑣𝐴 = 0, ∆𝑥𝐴 = 0, ℎ𝐴 = 𝑦 = 1 

Kinetic Energy TA 

∴ 𝑇𝐴 =
1

2
𝑚𝑣𝐴

2 = 0 

Potential Energy UA 

∴ 𝑈𝐴 =
1

2
𝑘∆𝑥𝐴

2 +𝑚𝑔ℎ𝐴 = 0 + 2 × 9.81 × 1 = 19.62 𝑁.𝑚 = 19.62 𝐽 

At point C: 

𝑣𝐶 =? ?, ℎ𝐶 = 0 

∆𝑥𝐶 = 𝐿𝑓 − 𝐿0 = √12 + 0.752 − 0.75 = 0.5 𝑚 

Kinetic Energy TC 

∴ 𝑇𝐶 =
1

2
𝑚𝑣𝐶

2 =
1

2
2𝑣𝐶

2 = 𝑣𝐶
2 

Potential Energy UC 

∴ 𝑈𝐶 =
1

2
𝑘∆𝑥𝐶

2 +𝑚𝑔ℎ𝐶 =
1

2
3 × 0.52 + 0

=
3

8
 𝑁.𝑚 = 0.375 𝑁.𝑚 = 0.375 𝐽 

By using Conservation of Energy 

𝑇𝐴 + 𝑈𝐴 = 𝑇𝐶 + 𝑈𝐶 

∴ 0 + 19.62 = 𝑣𝐶
2 + 0.375 

𝑣𝐶 = √19.62 − 0.375 = 4.39 𝑚/𝑠 

(b) it is released at A with an upward velocity vA = 2 m/s 

At point A: 
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𝑣𝐴 = 2 𝑚/𝑠, ∆𝑥𝐴 = 0, ℎ𝐴 = 𝑦 = 1 

Kinetic Energy TA 

∴ 𝑇𝐴 =
1

2
𝑚𝑣𝐴

2 =
1

2
2 × 22 = 4 𝑁.𝑚 = 4 𝐽 

Potential Energy UA 

∴ 𝑈𝐴 =
1

2
𝑘∆𝑥𝐴

2 +𝑚𝑔ℎ𝐴 = 0 + 2 × 9.81 × 1 = 19.62 𝑁.𝑚 = 19.62 𝐽 

At point C: 

𝑣𝐶 =? ?, ℎ𝐶 = 0 

∆𝑥𝐶 = 𝐿𝑓 − 𝐿0 = √12 + 0.752 − 0.75 = 0.5 𝑚 

Kinetic Energy TC 

∴ 𝑇𝐶 =
1

2
𝑚𝑣𝐶

2 =
1

2
2𝑣𝐶

2 = 𝑣𝐶
2 

Potential Energy UC 

∴ 𝑈𝐶 =
1

2
𝑘∆𝑥𝐶

2 +𝑚𝑔ℎ𝐶 =
1

2
3 × 0.52 + 0 =

3

8
 𝑁.𝑚 = 0.375 𝑁.𝑚 = 0.375 𝐽 

By using Conservation of Energy 

𝑇𝐴 + 𝑈𝐴 = 𝑇𝐶 + 𝑈𝐶 

∴ 4 + 19.62 = 𝑣𝐶
2 + 0.375 

𝑣𝐶 = √19.62 + 4 − 0.375 = 4.821 𝑚/𝑠 

Example: (6) 

The 2-kg collar is attached to a spring that 

has an unstretched length of 2 m. If the 

collar is drawn to point B and released from 

rest, determine its speed when it arrives at 

point A. 

Solution: 

Data: 

L0 = 2 m,  k = 3 N/m, vB = 0 

At point B: 

𝑣𝐵 = 0 , ∆𝑥𝐵 = 5 − 2 = 3 𝑚, ℎ𝐵 = 0 

Kinetic Energy TB 
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∴ 𝑇𝐵 =
1

2
𝑚𝑣𝐵

2 =
1

2
2 × 02 = 0 

Potential Energy UB 

∴ 𝑈𝐵 =
1

2
𝑘∆𝑥𝐵

2 +𝑚𝑔ℎ𝐵 =
1

2
3 × 32 + 0 = 13.5 𝑁.𝑚 = 13.5 𝐽 

At point A: 

𝑣𝐴 =? ?, ∆𝑥𝐴 = 3 − 2 = 1 𝑚, ℎ𝐴 = 0 

Kinetic Energy TA 

∴ 𝑇𝐴 =
1

2
𝑚𝑣𝐴

2 =
1

2
2 × 𝑣𝐴

2 = 𝑣𝐴
2 

Potential Energy UA 

∴ 𝑈𝐴 =
1

2
𝑘∆𝑥𝐴

2 +𝑚𝑔ℎ𝐴 =
1

2
3 × 12 + 0 = 1.5 𝑁.𝑚 = 1.5 𝐽 

By using Conservation of Energy 

𝑇𝐴 + 𝑈𝐴 = 𝑇𝐵 + 𝑈𝐵 

∴ 𝑣𝐴
2 + 1.5 = 0 + 13.5 

𝑣𝐴 = √13.5 − 1.5 = 3.464 𝑚/𝑠 

 

 Example: (7) 

The ram R shown in Fig. a has a mass of 100 kg and is released from 

rest 0.75 m from the top of a spring, A, that has a stiffness kA = 12 kN/m. 

If a second spring B, having a stiffness kB = 15 kN/m, is "nested" in A, 

determine the maximum displacement of A needed to stop the 

downward motion of the ram. The unstretched length of each spring is 

indicated in the figure. Neglect the mass of the springs. 

Solution: 

Potential Energy. We will assume that the ram compresses both 

springs at the instant it comes to rest. The datum is located through the 

center of gravity of the ram at its initial position, Fig. b. When the 

kinetic energy is reduced to zero (V2 = 0), A is compressed a distance 

SA and B compresses SB = SA - 0.1 m. 
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At position (1) 

𝑇1 = 0   at   𝑣1 = 0    

𝑉1 = 0   at   ℎ1 = 0 

At position (2) 

𝑇2 = 0   at   𝑣2 = 0    

𝑉2 =
1

2
𝑘𝐴𝑆𝐴

2 +
1

2
𝑘𝐵𝑆𝐵

2 −𝑚𝑔ℎ2 =
1

2
𝑘𝐴𝑆𝐴

2 +
1

2
𝑘𝐵(𝑆𝐴 − 0.1)2 −𝑊ℎ2 

= (
1

2
12000 × 𝑆𝐴

2) + (
1

2
15000(𝑆𝐴 − 0.1)2) − (981(0.75 + 𝑆𝐴)) 

By using the Conservation of Energy. 

𝑇1 + 𝑉1 = 𝑇2 + 𝑉2 

0 + 0 = 0 + (
1

2
12000 × 𝑆𝐴

2) + (
1

2
15000(𝑆𝐴 − 0.1)2) − (981(0.75 + 𝑆𝐴)) 

Rearranging the terms, 

13500 𝑆𝐴
2 − 2481 𝑆𝐴 − 660.75 = 0 

Using the quadratic formula and solving for the positive root, we have 

SA = 0.331 m                                  Ans. 

Since SB = 0.331 m - 0.1 m = 0.231 m, which is positive, the assumption that both springs 

are compressed by the ram is correct. 
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Chapter (3) 

Impulse and Momentum 
 

CHAPTER OBJECTIVES 

 

• To develop the principle of linear impulse and momentum for a particle and 

apply it to solve problems that involve force, velocity, and time. 

• To study the conservation of linear momentum for particles. 

• To analyze the mechanics of impact. 

• To introduce the concept of angular impulse and momentum. 

• To solve problems involving steady fluid streams and propulsion with 

variable mass. 

 

Principle of Linear Impulse and Momentum 
 

In this section we will integrate the equation of motion with respect to time and thereby 

obtain the principle of impulse and momentum. The resulting equation will be useful for 

solving problems involving force, velocity, and time. 

Using kinematics, the equation of motion for a particle of mass can be written as 

 

Σ𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑣

𝑑𝑡
                                                                                                             (1) 

 

where a and v are both measured from an inertial frame of reference. 

Rearranging the terms and integrating between the limits v = v1 at t = tl and v = v2 at t = 

t2, we have 

∑∫ 𝐹𝑑𝑡

𝑡2

𝑡1

= 𝑚 ∫ 𝑑𝑣

𝑣2

𝑣1

 

Or 

 

∑∫ 𝐹𝑑𝑡

𝑡2

𝑡1

= 𝑚𝑣2 −𝑚𝑣1 = 𝑚(𝑣2 − 𝑣1)                                                                   (2) 

 

This equation is referred to as the principle of linear impulse and momentum. From the 

derivation it can be seen that it is simply a time integration of the equation of motion. It 

provides a direct means of obtaining the particle's final velocity v2 after a specified time 

period when the particle's initial velocity is known and the forces acting on the particle 

are either constant or can be expressed as functions of time. By comparison, if v2 was 

determined using the equation of motion, a twostep process would be necessary; i.e., 

apply ∑𝑭 = 𝒎𝒂 to obtain a, then integrate a = dv/dt to obtain v2. 

 



Kinetics of a Particle  Part II: Dynamics  Engineering Mechanics 1405-211 

Page | 29       
Dr-Mamdouh El-Elamy 

 

Linear Momentum. Each of the two vectors of the form L = mv in Eq. (2) is 

referred to as the particle's linear momentum. Since m is a positive scalar, the 

linear-momentum vector has the same direction as v, and its magnitude mv has 

units of mass-velocity, e.g., kg.m/s, or slug ' ft/s. 

 

Linear Impulse. The integral 𝑰 = ∫𝑭𝒅𝒕 in Eq. (2) is referred to as the linear 

impulse. This term is a vector quantity which measures the effect of a force 

during the time the force acts. Since time is a positive scalar, the impulse acts 

in the same direction as the force, and its magnitude has units of force-time, 

e.g., N.s or lb·s. * 

If the force is expressed as a function of time, the impulse can be determined 

by direct evaluation of the integral. In particular, if the force is constant in both 

magnitude and direction, the resulting impulse becomes. 

𝐼 = ∫ 𝐹𝑐𝑑𝑡

𝑡2

𝑡1

= 𝐹𝑐(𝑡2 − 𝑡1) 

Graphically the magnitude of the impulse can be represented by the shaded area 

under the curve of force versus time, Fig. l. A constant force creates the shaded 

rectangular area shown in Fig. 2. 

 
Although the units for impulse and momentum are defined differently, it can 

be shown that Eq. 2 is dimensionally homogeneous. 

 

Principle of Linear Impulse and Momentum. For problem solving, Eq. 2 will 

be rewritten in the form 

 

𝑚𝑣1 +∑ ∫ 𝐹𝑑𝑡

𝑡2

𝑡1

= 𝑚𝑣2                                                                                (3) 

which states that the initial momentum of the particle at time t1 plus the sum of 

all the impulses applied to the particle from t1 to t2 is equivalent to the final 

momentum of the particle at time t2. These three terms are illustrated 

graphically on the impulse and momentum diagrams shown in Fig. 3. The two 
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momentum diagrams are simply outlined shapes of the particle which indicate 

the direction and magnitude of the particle's initial and final momenta, mv1 and 

mv2. Similar to the free-body diagram, the impulse diagram is an outlined shape 

of the particle showing all the impulses that act on the particle when it is located 

at some intermediate point along its path. If each of the vectors in Eq. (3) is 

resolved into its x, y, z components, we can write the following three scalar 

equations of linear impulse and momentum. 

 

𝑚(𝑣𝑥)1 +∑ ∫ 𝐹𝑥𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑥)2 

𝑚(𝑣𝑦)1 +∑ ∫ 𝐹𝑦𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑦)2                                                                   (4) 

𝑚(𝑣𝑧)1 +∑ ∫ 𝐹𝑧𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑧)2 

 

 
Fig. 3. 
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Example:3.  

The 0.5-kg ball strikes the rough ground and rebounds with the velocities 

shown. Determine the magnitude of the impulse the ground exerts on the ball. 

Assume that the ball does not slip when it strikes the ground, and neglect the 

size of the ball and the impulse produced by the weight of the ball. 

 

Solution: 

Free-Body Diagram. See Fig. 4.  

 
Fig. 4. 

Principle of Impulse and Momentum. Applying Eqs. (4) in the x-direction, we 

have 

At x-direction: 

 

𝑚(𝑣𝑥)1 +∑ ∫ 𝐹𝑥𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑥)2 

𝐼𝑥 =∑ ∫ 𝐹𝑥𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑥)2 −𝑚(𝑣𝑥)1 = 𝑚[(𝑣𝑥)2 − (𝑣𝑥)1] 

∴ 𝐼𝑥 = 𝑚[(𝑣𝑥)2 − (𝑣𝑥)1] = 𝑚[𝑣2 cos 30
° − 𝑣1 cos 45

°] = 

 

𝒗     𝟎
°

𝒗      
°

𝒗
 
  
 
 
𝟎
°

𝒗
 
   

 
 
°
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∴ 𝐼𝑥 = 0.5[10 cos30° − 25cos 45°] = −4.51 𝑁. 𝑠 

 

At y-direction: 

 

𝑚(𝑣𝑦)1 +∑ ∫ 𝐹𝑦𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑦)2 

𝐼𝑦 =∑ ∫ 𝐹𝑦𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑦)2 −𝑚(𝑣𝑦)1 = 𝑚 [(𝑣𝑦)2 − (𝑣𝑦)1] 

∴ 𝐼𝑦 = 𝑚 [(𝑣𝑦)2 − (𝑣𝑦)1] = 𝑚[𝑣2 sin 30
° − 𝑣1 sin 45

°] = 

 

∴ 𝐼𝑦 = 0.5[10 sin 30° − (−25 sin 45°)] = 11.339 𝑁. 𝑠 

 

∴ 𝐼 = √𝐼𝑥
2 + 𝐼𝑦

2 = √(−4.51)2 + (11.339) 2 = 12.2 𝑁. 𝑠 

 

Example4:   

The wheels of the 1.5-Mg car generate the traction force F described by the 

graph. If the car starts from rest, determine its speed when t = 6 s. 

Solution: 

(𝑣𝑥)1 =  0 

 
Principle of Impulse and Momentum. Applying Eqs. (4) in the x-direction, we 

have 

𝑚(𝑣𝑥)1 +∑ ∫ 𝐹𝑥𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑥)2 

0 +
1

2
(2 × 6000) + (6 − 2)6000 = 1.5 × 103(𝑣𝑥)2 

∴ (𝑣𝑥)2 =

1
2
(2 × 6000) + (6 − 2)6000

1.5 × 103
= 20 𝑚 𝑠⁄  
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Example5:   
Determine the maximum speed attained by the 1.5-

Mg rocket sled if the rockets provide the thrust 

shown in the graph. Initially, the sled is at rest. 

Neglect friction and the loss of mass due to fuel 

consumption. 

Answer:  

Data: m = 1.5 Mg = 1.5 × 103 = 1500 kg,  v1 = 0 

 

𝒎(𝒗 )𝒙 + ∑∫ 𝑭𝒙𝒅𝒕
𝒕 
𝒕 

= 𝒎(𝒗 )𝒙  

𝟎 +  ( 𝟎 × 𝟎.  ) +  ( 𝟎 × 𝟎.  ) + ( 𝟎 × 𝟎.  ) =   𝟎𝟎 𝒗   

𝒗 =
 ( 𝟎 × 𝟎.  ) +  ( 𝟎 × 𝟎.  ) + ( 𝟎 × 𝟎.  )

  𝟎𝟎
=  𝟎 𝒎 𝒔⁄  

 

 

 

Example6: 

If the coefficient of kinetic friction between the 

150-kg crate and the ground is µk = 0.2, 

determine the speed of the crate when t = 4 s. 

The crate starts from rest and is towed by the 

100-N force. 

Data: m = 150 kg, P = 100 N, µk = 0.2, and ∆𝑡 = 4 𝑠 

Solution: 

From Free-Body Diagram. 

+↑ ∑𝐹𝑦 = 𝑚𝑎𝑦 = 0  

100 sin 30𝑜 +𝑁𝐶 −𝑚𝑔 = 0 

∴ 𝑁𝐶 = (150 × 9.81) − (100 sin 30𝑜)

= 1421.5 𝑁 

 

Principle of Impulse and Momentum. Applying 

in the x-direction, we have 

𝑚(𝑣𝑥)1 +∑ ∫ 𝐹𝑥𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑥)2 

0 + (100 cos 30𝑜 × 4) − (0.2 × 1421.5 ) = 100(𝑣𝑥)2 

100 N
 𝟎 

 𝟎𝟎     𝟎 

 𝟎𝟎     𝟎  =𝒎 

  

𝑭 =     

Free body diagram
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∴ (𝑣𝑥)2 =
(100 cos 30𝑜 × 4) − (0.2 × 1421.5 × 4 )

100
= −7.91⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑚 𝑠⁄  

Example7: 

The l0-kg smooth block moves to the 

right with a velocity of vo = 3 m/s when 

force F is applied. If the force varies as 

shown in the graph, determine the 

velocity of the block when t = 4.5 s. 

Solution: 

From the graph. 

By applying Principle of Impulse and Momentum   

𝑚𝑣1 +∑ ∫ 𝐹𝑑𝑡

𝑡2

𝑡1

= 𝑚𝑣2 

10 × 3 + (0.5 × 3 × 20) + (0.5 × 1.5 × (−20)) = 10𝑣2 

∴ 𝑣2 =
(10 × 3) + (0.5 × 3 × 20) + (0.5 × 1.5 × (−20))

10
= 4.5𝑚 𝑠⁄  
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Solved Example 

1. Assuming that the force acting on a 2-g bullet, as it passes horizontally through the barrel 

of a rifle, varies with time in the manner shown, determine the maximum net force Fo 

applied to the bullet when it is fired. The muzzle velocity is 500 m/s when t = 0.75 ms. 

Neglect friction between the bullet and the rifle barrel. 

 

Solution: 

Data:  m = 2 g = 2 ×10-3 kg, v1 = 0, v2 = 500 m/s, t = 0.75 ms 

1 s = 1000 ms 

t = 0.75 ×10-3 s 

Principle of Impulse and Momentum. Applying in the x-direction, we have 

𝑚(𝑣𝑥)1 +∑ ∫ 𝐹𝑥𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣𝑥)2 

0 +
1

2
𝐹𝑜𝑡 = 𝑚𝑣2 

0 +
1

2
𝐹𝑜 × 0.75 = 2 × 10−3 × 500 

𝐹𝑜 =
2 × 10−3 × 500

1
2
× 0.75 × 10−3

= 2666.7 𝑁 = 2.7 𝑘𝑁 
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2. The motor M pulls on the cable with a force of F, which has a magnitude that varies as 

shown on the graph. If the 20-kg crate is originally resting on the floor such that the cable 

tension is zero at the instant the motor is turned on, determine the speed of the crate when 

t = 6 s. Hint: First determine the time needed to begin lifting the crate. 

 

Solution: 

Data: m = 20 kg, t = 6 sec, v1 = 0 

Principle of Impulse and Momentum. Applying, we have 

𝑚(𝑣)1 +∑ ∫ 𝐹𝑑𝑡

𝑡2

𝑡1

= 𝑚(𝑣)2 

0 + [
1

2
5 × 250 + 250(6 − 5)] = 20𝑣2 

𝑣2 =
[
1
2
5 × 250 + 250(6 − 5)]

20
= 43.75 𝑚/𝑠 
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Chapter (4) 

Impact 

Impact occurs when two bodies collide with each other during a very short period of time, 

causing relatively large (impulsive) forces to be exerted between the bodies. The striking of 

a hammer on a nail, or a golf club on a ball, are common examples of impact loadings. 

In general, there are two types of impact. Central impact occurs when the direction of motion 

of the mass centers of the two colliding particles is along a line passing through the mass 

centers of the particles. This line is called the line of impact, which is perpendicular to the 

plane of contact, Fig. 1a. When the motion of one or both of the particles make an angle with 

the line of impact, Fig. 1b, the impact is said to be oblique impact. 

 

Fig. 1: 

Central Impact. To illustrate the method for analyzing the mechanics of impact, consider 

the case involving the central impact of the two particles A and B shown in Fig. 2. 

The particles have the initial momenta shown in Fig. 2a. Provided (vA)1 > (vB)1, collision will 

eventually occur. 

• During the collision the particles must be thought of as deformable or nonrigid. The 

particles will undergo a period of deformation such that they exert an equal but opposite 

deformation impulse Ip dt on each other, Fig. 2b. 

• Only at the instant of maximum deformation will both particles move with a common 

velocity v, since their relative motion is zero, Fig. 2c. 

• Afterward a period of restitution occurs, in which case the particles will either return to 

their original shape or remain permanently deformed. The equal but opposite restitution 

impulse ∫𝑹 𝒅𝒕 pushes the particles apart from one another, Fig. 2d. In reality, the physical 

properties of any two bodies are such that the deformation impulse with always be greater 

than that of restitution, i.e., ∫   𝒅𝒕 > ∫𝑹 𝒅𝒕. 

• Just after separation the particles will have the final momenta shown in Fig. 2e, where (vb)2 

> (vA)2· 

In most problems the initial velocities of the particles will be known, and it will be necessary 

to determine their final velocities (vA)2 and (vB)2. In this regard, momentum for the system 
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of particles is conserved since during collision the internal impulses of deformation and 

restitution cancel. Hence, referring to Fig. 2a and Fig. 2e we require 

 

 

Fig. 2 

  (  + ⃗⃗⃗⃗  ⃗ )         𝑚𝐴(𝑣𝐴)1 +𝑚𝐵(𝑣𝐵)1 = 𝑚𝐴(𝑣𝐴)2 +𝑚𝐵(𝑣𝐵)2                                                  (1) 

 

In order to obtain a second equation necessary to solve for (vA)2 and (vB)2, we must apply the 

principle of impulse and momentum to each particle. For example, during the deformation 

phase for particle A, Figs. 2a, 2b, and 2c, we have 

 

(  + ⃗⃗⃗⃗  ⃗ )         𝑚𝐴(𝑣𝐴)1 −∫𝑃 𝑑𝑡 = 𝑚𝐴𝑣 

For the restitution phase, Figs. 2c, 2d, and 2e, 

(  + ⃗⃗⃗⃗  ⃗ )         𝑚𝐴𝑣 −∫𝑅 𝑑𝑡 = 𝑚𝐴(𝑣𝐴)2 

The ratio of the restitution impulse to the deformation impulse is called the coefficient of 

restitution, e. From the above equations, this value for particle A is 

 

𝑒 =
∫𝑅 𝑑𝑡

∫𝑃 𝑑𝑡
=
𝑣 − (𝑣𝐴)2
(𝑣𝐴)1 − 𝑣

 

In a similar manner, we can establish e by considering particle B, Fig. 2. This yields 
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𝑒 =
∫𝑅 𝑑𝑡

∫𝑃 𝑑𝑡
=
(𝑣𝐵)2 − 𝑣

𝑣 − (𝑣𝐵)1
 

If the unknown v is eliminated from the above two equations, the coefficient of restitution 

can be expressed in terms of the particles' initial and final velocities as 

  ( +⃗⃗  )            𝑒 =
∫𝑅 𝑑𝑡

∫𝑃 𝑑𝑡
=
(𝑣𝐵)2 − (𝑣𝐴)2
(𝑣𝐴)1 − (𝑣𝐵)1

                                                                          (2) 

Provided a value for e is specified, Eqs. (1) and (2) can be solved simultaneously to obtain 

(vA)2 and (vB)2. In doing so, however, it is important to carefully establish a sign convention 

for defining the positive direction for both vA and vB and then use it consistently when writing 

both equations. As noted from the application shown, and indicated symbolically by the 

arrow in parentheses, we have defined the positive direction to the right when referring to 

the motions of both A and B. Consequently, if a negative value results from the solution of 

either (vA)2 or (vB)2, it indicates motion is to the left. 

Coefficient of Restitution. From Figs. 2a and 2e, it is seen that Eq. (2) states that e is equal 

to the ratio of the relative velocity of the particles' separation just after impact, (vB)2 - (vA)2, 

to the relative velocity of the particles' approach just before impact, (vB)1 - (vA)1· By 

measuring these relative velocities experimentally, it has been found that e varies 

appreciably with impact velocity as well as with the size and shape of the colliding bodies. 

For these reasons the coefficient of restitution is reliable only when used with data which 

closely approximate the conditions which were known to exist when measurements of it 

were made. In general e has a value between zero and one, and one should be aware of the 

physical meaning of these two limits. 

 

Elastic Impact (e = 1). If the collision between the two particles is perfectly elastic, the 

deformation impulse (∫  𝒅𝒕). is equal and opposite to the restitution impulse (∫𝑹 𝒅𝒕). 
Although in reality this can never be achieved, e = 1 for an elastic collision. 

 

Plastic Impact (e = 0). The impact is said to be inelastic or plastic when e = 0. In this case 

there is no restitution impulse(∫  𝒅𝒕), so that after collision both particles couple or stick 

together and move with a common velocity. 

 

Example 1: 

Disks A and B have a mass of 2 kg and 4 kg, respectively. If they have the velocities shown, 

and e = 0.4, determine their velocities just after direct central impact. 

 

 
Solution: 

Conservation of Momentum. In reference to the momentum diagrams, we have 

𝑚𝐴(𝑣𝐴)1 +𝑚𝐵(𝑣𝐵)1 = 𝑚𝐴(𝑣𝐴)2 +𝑚𝐵(𝑣𝐵)2 

( +⃗⃗  )           2(2) + 4(−5) = 2(𝑣𝐴)2 + 4(𝑣𝐵)2 

𝒗𝑨  =   𝒎/𝒔
𝒗𝑩  =   𝒎/𝒔

𝑨
𝑩
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∴ 2(𝑣𝐴)2 + 4(𝑣𝐵)2 = −16                                                                                                   (1) 

 

Coefficient of Restitution. 

𝑒 =
(𝑣𝐵)2 − (𝑣𝐴)2
(𝑣𝐴)1 − (𝑣𝐵)1

 

∴ 0.4 =
(𝑣𝐵)2 − (𝑣𝐴)2
2 − (−5)

 

∴ (𝑣𝐵)2 − (𝑣𝐴)2 = 2.8                                                                                                               (2) 

 

Solving Eqs. (1) and (2) for (𝑣𝐵)2 − (𝑣𝐴)2 yields 

(𝑣𝐴)2 = −4.533𝑚 𝑠⁄  = 4.533𝑚 𝑠⁄ ← 

(𝑣𝐵)2 = −1.733𝑚 𝑠⁄ = 1.733𝑚 𝑠⁄ ←  

 

Oblique Impact. When oblique impact occurs between two smooth particles, the particles 

move away from each other with velocities having unknown directions as well as unknown 

magnitudes. Provided the initial velocities are known, then four unknowns are present in the 

problem. As shown in Fig. 3a, these unknowns may be represented either as (vA)2, (vB)2, θ2, 

and ϕ2, or as the x and y components of the final velocities. 

 
Fig. 3: 

 

Procedure for Analysis (Oblique Impact) 

 

If the y axis is established within the plane of contact and the x axis along the line of impact, 

the impulsive forces of deformation and restitution act only in the x direction, Fig. 3b. By 

resolving the velocity or momentum vectors into components along the x and y axes, Fig. 

3b, it is then possible to write four independent scalar equations in order to determine (vAx)2, 

(vAy)2, (vBx)2, and (vBy)2. 

• Momentum of the system is conserved along the line of impact, x axis, so that ∑𝑚(𝑣𝑥)1 =
∑𝑚(𝑣𝑥)2 

• The coefficient of restitution, e = [(vBx)2 - (vAx )2 / [(vAx )1 - (vBx)1], relates the relative 

velocity components of the particles along the line of impact (x axis). 
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• If these two equations are solved simultaneously, we obtain (vAx)2 and (vBx)2. 

• Momentum of particle A is conserved along the y axis, perpendicular to the line of impact, 

since no impulse acts on particle A in this direction. As a result 𝑚𝐴(𝑣𝐴𝑦)1 = 𝑚𝐴(𝑣𝐴𝑦)2 or 

(𝑣𝐴𝑦)1 = (𝑣𝐴𝑦)2 

• Momentum of particle B is conserved along the y axis, perpendicular to the line of impact, 

since no impulse acts on particle B in this direction. Consequently (𝑣𝐵𝑦)1 = (𝑣𝐵𝑦)2. 

Application of these four equations is illustrated in Example 2. 

 

Example 2: 

Two smooth disks A and E, having a mass of 1 kg and 2 kg, respectively, collide with 

the velocities shown in Figure. If the coefficient of restitution for the disks is e = 0.75, 

determine the x and y components of the final velocity of each disk just after collision. 

 

Solution: 

Resolving each of the initial velocities into x and y components, we have 

(𝑣𝐴𝑥)1 = 3 cos 30𝑜 = 2.598 𝑚 𝑠⁄                   (𝑣𝐴𝑦)1 = 3 sin 30𝑜 = 1.50 𝑚 𝑠⁄  

(𝑣𝐵𝑥)1 = −1cos 45𝑜 = −0.7071 𝑚 𝑠⁄          (𝑣𝐵𝑦)1 = −1sin 45𝑜 = −0.7071 𝑚 𝑠⁄  

Since the impact occurs in the x direction (line of impact), the conservation of momentum 

for both disks can be applied in this direction.  

Conservation of "x" Momentum. In reference to the momentum diagrams, we have 

 

𝑚𝐴(𝑣𝐴𝑥)1 +𝑚𝐵(𝑣𝐵𝑥)1 = 𝑚𝐴(𝑣𝐴𝑥)2 +𝑚𝐵(𝑣𝐵𝑥)2 

1(2.598) + 2(−0.707) = 1(𝑣𝐴𝑥)2 + 2(𝑣𝐵𝑥)2 

∴ (𝑣𝐴𝑥)2 + 2(𝑣𝐵𝑥)2 = 1.184                                                                                                   (1) 

Coefficient of Restitution (x). 

𝑒 =
(𝑣𝐵𝑥)2 − (𝑣𝐴𝑥)2
(𝑣𝐴𝑥)1 − (𝑣𝐵𝑥)1

 

𝜽 =  𝟎 

𝝓 =    

𝒗𝑨  =  𝒎 𝒔⁄

𝒗𝑩  =  𝒎 𝒔⁄

Line of impact

Plane of contact

A

B

y

x
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0.75 =
(𝑣𝐵𝑥)2 − (𝑣𝐴𝑥)2

2.598 − (−0.7071)
 

∴ (𝑣𝐵𝑥)2 − (𝑣𝐴𝑥)2 = 2.479                                                                                            (2) 

Solving Eqs. (1) and (2) for (𝑣𝐵𝑥)2 − (𝑣𝐴𝑥)2 yields 

(𝑣𝐴𝑥)2 = −1.26 𝑚 𝑠⁄ ←       and      (𝑣𝐴𝑥)2 = 1.22 𝑚 𝑠⁄ → 

 

Conservation of "y" Momentum. The momentum of each disk is conserved in the y 

direction (plane of contact) since the disks are smooth and therefore no external impulse acts 

in this direction. 

 

𝑚𝐴(𝑣𝐴𝑦)1
= 𝑚𝐴(𝑣𝐴𝑦)2

     ∴ (𝑣𝐴𝑦)2
= 1.50 𝑚 𝑠⁄ ↑ 

𝑚𝐵(𝑣𝐵𝑦)1 = 𝑚𝐵(𝑣𝐵𝑦)2     ∴ (𝑣𝐵𝑦)2 = −0.707 𝑚 𝑠⁄ ↑= 0.707 𝑚 𝑠⁄ ↓ 

(𝑣𝐴)2 = √(−1.26)2 + (1.50)2 = 1.96 𝑚 𝑠⁄  

(𝑣𝐵)2 = √(1.22)2 + (0.707)2 = 1.41 𝑚 𝑠⁄  

∴ 𝜃2 = tan−1
(𝑣𝐴𝑦)2
(𝑣𝐴𝑥)2

= tan−1
1.50

−1.26
= −50𝑜   ∴ 𝜃2 = 180 − 50 = 130𝑜  from x-axis 

 

∴ 𝜙2 = tan−1
(𝑣𝐵𝑦)2
(𝑣𝐵𝑥)2

= tan−1
−0.707

1.22
= −30𝑜    ∴ 𝜙2 = 360 − 30 = 330𝑜   from x-axis 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

𝜽 =  𝟎 

𝝓 =  𝟎 

𝒗𝑨  =  .  𝒎 𝒔⁄

𝒗𝑩  =  .  𝒎 𝒔⁄

Line of impact

Plane of contact

A

B

y

x
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Example 3: 

The pool ball A travels with a velocity of 10 m/s 

just before it strikes ball B, which is at rest. If the 

masses of A and B are each 200 g, and the 

coefficient of restitution between them is e = 0.8, 

determine the velocity of both balls just after 

impact. 

Solution: 

Resolving each of the initial velocities into x and y 

components, we have 

𝑣𝐴𝑥 = 10 cos 30𝑜 = −8.66 𝑚 𝑠⁄                   𝑣𝐴𝑦 = 10 sin 30𝑜 = 5 𝑚 𝑠⁄ ↑ 

𝑣𝐵𝑥 = 0         𝑣𝐵𝑦 = 0 

 

Since the impact occurs in the x direction (line of 

impact), the conservation of momentum for both 

disks can be applied in this direction.  

Conservation of "x" Momentum. In reference to 

the momentum diagrams, we have 

 

𝑚𝐴𝑣𝐴𝑥 +𝑚𝐵𝑣𝐵𝑥 = 𝑚𝐴𝑢𝐴𝑥 +𝑚𝐵𝑢𝐵𝑥 

0.2(−8.66) + 0 = 0.2𝑢𝐴𝑥 + 0.2𝑢𝐵𝑥 

∴ 𝑢𝐴𝑥 + 𝑢𝐵𝑥 = −8.66                                                                                               (1) 

Coefficient of Restitution (x). 

𝑒 =
𝑢𝐵𝑥 − 𝑢𝐴𝑥
𝑣𝐴𝑥 − 𝑣𝐵𝑥

=
𝑢𝐵𝑥 − 𝑢𝐴𝑥
−8.66 − 0

= 0.8 

∴ 𝑢𝐵𝑥 − 𝑢𝐴𝑥 = −6.928    

∴ 𝑢𝐵𝑥 = −6.928+ 𝑢𝐴𝑥                                                                                               (2) 

From  Eqns. (1) and (2) we get 

𝑢𝐴𝑥 − 6.928+ 𝑢𝐴𝑥 = −8.66 

∴ 𝑢𝐴𝑥 = −0.866𝑚 𝑠⁄ ←  and 𝑢𝐵𝑥 = −7.794𝑚 𝑠⁄ ← 

Conservation of "y" Momentum. The momentum of each disk is conserved in the y 

direction (plane of contact), since the disks are smooth and therefore no external impulse 

acts in this direction. 

 

𝑚𝐴𝑣𝐴𝑦 = 𝑚𝐴𝑢𝐴𝑦     ∴ 𝑢𝐴𝑦 = 5 𝑚 𝑠⁄ ↑ 

 𝟎 

 𝟎𝒎 𝒔⁄

𝑨

𝑨𝑩

𝒚

𝒙

𝝓𝑨

𝑨𝑩

𝑨

𝒚

𝒙𝑩
𝒗𝑨𝒙

𝒗𝑨𝒚

 𝑨𝒚

 𝑨𝒙

 𝑨

 𝑩
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𝑚𝐵𝑣𝐵𝑦 = 𝑚𝐵𝑢𝐵𝑦     ∴ 𝑢𝐵𝑦 = 0 

𝑢𝐴 = √(−0.866)2 + (5)2 = 5.074 𝑚 𝑠⁄  

𝑢𝐵 = √(−7.794)2 + (0)2 = −7.794 𝑚 𝑠⁄  

∴ 𝜙𝐴 = tan−1
𝑢𝐴𝑦

𝑢𝐴𝑥
= tan−1 (

5

−0.866
) = −80.2𝑜   ∴ 𝜃2 = 180 − 80.2 = 99.83𝑜  from x-axis 

 

∴ 𝜙𝐵 = tan−1
𝑢𝐵𝑦

𝑢𝐵𝑥
= tan−1 (

0

−7.794
) = 0    

 

 

 

Example 4: 

Two disks A and B weigh 2 kg and 5 kg, respectively. 

If they are sliding on the smooth horizontal plane with 

the velocities shown, determine their velocities just 

after impact. The coefficient of restitution between 

the disks is e = 0.6. 

Solution: 

Resolving each of the initial velocities into x and y 

components, we have 

(𝑣𝐴𝑥)1 = −5cos 45𝑜 = −3.54 𝑚 𝑠⁄                   (𝑣𝐴𝑦)1 = −5 sin 45𝑜 = −3.54 𝑚 𝑠⁄  

(𝑣𝐵𝑥)1 = 10 cos 30𝑜 = 8.66 𝑚 𝑠⁄          (𝑣𝐵𝑦)1 = −10 sin 30𝑜 = −5 𝑚 𝑠⁄  

𝝓𝑨

𝑨𝑩

𝑨

𝒚

𝒙𝑩
𝒗𝑨𝒙

𝒗𝑨𝒚

 𝑨𝒚

 𝑨𝒙

 𝑨

 𝑩

AB
x

y
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Since the impact occurs in the x direction (line of impact), the 

conservation of momentum for both disks can be applied in this 

direction.  

Conservation of "x" Momentum. In reference to the 

momentum diagrams, we have 

𝑚𝐴(𝑣𝐴𝑥)1 +𝑚𝐵(𝑣𝐵𝑥)1 = 𝑚𝐴(𝑣𝐴𝑥)2 +𝑚𝐵(𝑣𝐵𝑥)2 

2(−3.54) + 5(8.66) = 2(𝑣𝐴𝑥)2 + 5(𝑣𝐵𝑥)2 

∴ 2(𝑣𝐴𝑥)2 + 5(𝑣𝐵𝑥)2 = 36.22                                                                                                   (1) 

Coefficient of Restitution (x). 

𝑒 =
(𝑣𝐵𝑥)2 − (𝑣𝐴𝑥)2
(𝑣𝐴𝑥)1 − (𝑣𝐵𝑥)1

 

0.6 =
(𝑣𝐵𝑥)2−(𝑣𝐴𝑥)2

−3.54−(8.66)
  

∴ (𝑣𝐵𝑥)2 − (𝑣𝐴𝑥)2 = −7.32                                                                                                     (2) 

Solving Eqs. (1) and (2) for (𝑣𝐵𝑥)2 − (𝑣𝐴𝑥)2 yields 

(𝑣𝐴𝑥)2 = 10.40 𝑚 𝑠⁄ →       and      (𝑣𝐵𝑥)2 = 3.1 𝑚 𝑠⁄ → 

Conservation of "y" Momentum. The momentum of each disk is conserved in the y 

direction (plane of contact) since the disks are smooth and therefore no external impulse acts 

in this direction. 

 

𝑚𝐴(𝑣𝐴𝑦)1 = 𝑚𝐴(𝑣𝐴𝑦)2     ∴ (𝑣𝐴𝑦)2 = −3.54 𝑚 𝑠⁄ ↓ 

𝑚𝐵(𝑣𝐵𝑦)1 = 𝑚𝐵(𝑣𝐵𝑦)2     ∴ (𝑣𝐵𝑦)2 = −5 𝑚 𝑠⁄ ↓ 

(𝑣𝐴)2 = √((𝑣𝐴𝑥)2)2 + ((𝑣𝐴𝑦)2)
2

= √(10.40)2 + (−3.54)2 = 10.986 𝑚 𝑠⁄  

(𝑣𝐵)2 = √((𝑣𝐵𝑥)2)2 + ((𝑣𝐵𝑦)2)
2

= √(3.1)2 + (−5)2 = 5.883 𝑚 𝑠⁄  

∴ 𝜃2 = tan−1
(𝑣𝐴𝑦)2
(𝑣𝐴𝑥)2

= tan−1
−3.54

10.4
= −18.8𝑜   ∴ 𝜃2 = 360 − 50 = 310𝑜  from x-axis 

 

∴ 𝜙2 = tan−1
(𝑣𝐵𝑦)2
(𝑣𝐵𝑥)2

= tan−1
−5

3.1
= −58.2𝑜    ∴ 𝜙2 = 360 − 58.2 = 301.8𝑜   from x-axis 

AB
x

y
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