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Chapter (1) 

Force system 

1. Analytical method 

The magnitude and direction of the resultant force may be obtained, 

analytically, as discussed below: 

 

Fig. 1 

1. First of all, analysis all forces into two components in free body diagram as 

shown in Fig. 1 (b). 

2. Resolve the forces horizontally and vertically and find their sums, i.e. ∑𝐹𝑥  

and ∑𝐹𝑦. We know that 

Sum of horizontal components of the forces at x-axis, 

∑𝐹𝑥 = 𝐹1 cos 𝜃1 − 𝐹2 cos 𝜃2                                                                      (1) 

Sum of vertically components of the forces at y-axis, 

∑𝐹𝑦 = 𝐹1 sin 𝜃1 + 𝐹2 sin 𝜃2 − 𝐹3                                                                   (2) 

3. Magnitude of the resultant force, 

x

y

Free body diagram

  

  

  

  cos𝜃2

 
 
si
n
𝜃
2

 
 
si
n
𝜃
1

  cos𝜃1

(b)

  
  

  

    

  

x

y

(a)



  Part I: Statics  Engineering Mechanics 1405-211 

 

Page | 2  
Dr-Mamdouh El-Elamy 

𝑅 = √(∑𝐹𝑥)
2 + (∑𝐹𝑦)

2
                                                                                                 (3) 

4. If 𝜃𝑅 is the angle, which the resultant force makes with the horizontal, then 

𝜃𝑅 = tan−1(∑𝐹𝑦 ∑𝐹𝑥⁄ )                                                                         (4) 

 

2. Graphical method 

The magnitude and position of the resultant force may also be obtained 

graphically as discussed below: 

1. First of all, draw the space diagram with the positions of the several Forces, 

as shown in Fig. 1 (a). 

2. Select suitable scale for all forces. 

3. Draw the force diagram as shown in Fig.2. 

 

Fig. 2: Force diagram 

 

3. Determine the resultant force by using equation (5) 

𝑅 = 𝑜𝑐̅̅ ̅ × 𝑠𝑐𝑎𝑙𝑒  

4. The direction of resultant force can be estimated from Fig.2. 
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Example: 1 

The screw eye in Fig. 3 is subjected to two forces, F1 and F2 . 

Determine the magnitude and direction of the resultant force. 

 

Fig. 3: Screw eye. 

Solution: 

1. Analytical method 

Draw free body diagram and analysis all forces into two components in x and 

y directions. 

 

From free body diagram we have; 

∑𝐹𝑥 = 𝐹1 cos 𝜃1 + 𝐹2 cos 𝜃2 = 100 cos 15𝑜 + 150 cos 80𝑜 = 122.63  

 

x

y

Free body diagram
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∑𝐹𝑦 = 𝐹1 sin 𝜃1 + 𝐹2 sin 𝜃2 = 100 sin 15𝑜 + 150 sin 80𝑜 = 173.60 𝑁  

The resultant force can be calculated by; 

𝑅 = √(∑𝐹𝑥)
2 + (∑𝐹𝑦)

2
= √(122.63)2 + (173.60)2 = 213 𝑁  

The direction of resultant force can be calculated by; 

𝜃𝑅 = tan−1
∑𝐹𝑦

∑𝐹𝑥
= tan−1

173.60

122.63
= 54.8𝑜  

2. Graphical method 

1. First of all, draw the space diagram with the positions of the several Forces, 

as shown in Fig. 3. 

2. Select suitable scale for all forces. 

    Take allowable scale for all 1 cm = 25 N 

3. Draw the force diagram as shown in Fig.4. 

 

 

Fig. 4 

From Fig. 4; 

𝑅 = 𝑜𝑏 × 𝑠𝑐𝑎𝑙𝑒 = 8.4 × 25 = 210 𝑁 

And  

𝜃𝑅 = 55𝑜 

y

x
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Example: 2 

The force F = 450 N acts on the frame shown in Fig. 5. Resolve this force into 

components acting along members AB and AC, and determine the magnitude 

of each component. 

 

Fig. 5: 

Solution: 

1. Analytical method 

Draw free body diagram and analysis all forces into two components in x and 

y directions. 

 

By using the Equilibrium conditions to obtain the forces FAC and FAB. 

1. ∑𝐹𝑥 = 0 

∴ 𝐹𝐴𝐵 cos45 − 𝐹𝐴𝐶 cos 30 = 0  

x

y
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∴ 𝐹𝐴𝐵 = 𝐹𝐴𝐶
cos30

cos45
                                                                                         (1) 

 

2. ∑𝐹𝑦 = 0 

∴ 𝐹𝐴𝐵 sin 45 − 𝐹𝐴𝐶 sin 30 − 450 = 0  

∴ 𝐹𝐴𝐵 sin 45 − 𝐹𝐴𝐶 sin 30 = 450                                                             (2) 

By solving Eqns. (1) and (2) we have 

𝐹𝐴𝐶
cos30

cos45
 sin 45 − 𝐹𝐴𝐶 sin 30 = 450  

𝐹𝐴𝐶
sin 45

cos45
 cos 30 − 𝐹𝐴𝐶 sin 30 = 450  

𝐹𝐴𝐶 tan 45 cos 30 − 𝐹𝐴𝐶 sin 30 = 450  

𝐹𝐴𝐶[tan 45 cos 30 − sin 30] = 450  

∴ 𝐹𝐴𝐶 =
450

[tan 45 cos 30−sin 30]
= 1229.4 𝑁 Tension force  

And 

𝐹𝐴𝐵 = 𝐹𝐴𝐶
cos 30

cos 45
= 1229.4

cos 30

cos 45
= 1505.7 𝑁 Compression force  

 

 

 

 

 

 

 

 

 

 

 

 

 



  Part I: Statics  Engineering Mechanics 1405-211 

 

Page | 7  
Dr-Mamdouh El-Elamy 

Example: 3 

Determine the magnitude of the resultant force and its direction measured 

counterclockwise from the positive x axis. Using analytical and graphical methods. 

 

 

 

 

 

 

 

 

 

Solution: 

I. Analytical Method  

From the free body diagram, we get; 

∑ 𝒙 = 𝟓𝟎𝟎 𝐜𝐨𝐬  𝟎𝒐 − 𝟕𝟎𝟎 𝐜𝐨𝐬  𝟓𝒐 = − 𝟒 .  𝟒 𝑵 

∑ 𝒚 = 𝟓𝟎𝟎 𝐬𝐢𝐧  𝟎𝒐 − 𝟕𝟎𝟎 𝐬𝐢𝐧  𝟓𝒐 = +𝟔𝟖. 𝟖  𝑵  

The resultant force can be given as 

 = √(∑ 𝒙) + (∑ 𝒚)
 
=

√(− 𝟒 .  𝟒) + (+𝟔𝟖. 𝟖 ) =  𝟓 . 𝟕 𝑵  

The angle of the resultant force can be given using 

the Equation; 

𝝋 = 𝐭𝐚𝐧− 
∑ 𝒚
∑ 𝒙

= 𝐭𝐚𝐧− 
+𝟔𝟖. 𝟖 

− 𝟒 .  𝟒
=  𝟓. 𝟖𝒐 

∴  =  𝟖𝟎 − 𝝋 =  𝟖𝟎𝒐 −  𝟓. 𝟖𝒐 =  𝟔𝟒.  𝟗𝒐 

𝒙

𝒚

  = 𝟓𝟎𝟎 𝑵

  = 𝟕𝟎𝟎 𝑵

 𝟎𝒐

 𝟓𝒐

𝟓𝟎𝟎 𝐜𝐨𝐬  𝟎𝒐

𝟓
𝟎
𝟎
 𝐬
𝐢𝐧
 
𝟎
𝒐
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𝟎
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𝟓
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Free body diagram

  = 𝟕𝟎𝟎 𝑵

  = 𝟓𝟎𝟎 𝑵

𝒙

𝒚
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II. Graphical Method  

From the force polygon diagram, we get out; 

The resultant force can be measured from the diagram 

 =  𝟔𝟎 𝑵  and    =  𝟔𝟓𝒐 
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Example: 4 

Determine the resultant R of the three tension forces acting on the eye bolt. Find the 

magnitude of R and the angle which R makes with the positive x-axis. 

 

Answer:  

a. Analytical Method  

From the free body diagram, we have 

 

∑𝐹𝑥 = 20 sin 30𝑜 + 8 cos 45𝑜 = 15.656 𝑘𝑁  

∑𝐹𝑦 = 20 cos 30𝑜 − 4 − 8 sin 45𝑜 = 7.664 𝑘𝑁  

𝑅 = √∑𝐹𝑥
2

+∑𝐹𝑦
2

= √(15.656 )2 + (7.664)2 = 17.43 𝑘𝑁 

𝜃 = tan−1
∑𝐹𝑦
∑𝐹𝑥

= tan−1
7.664

15.656 
= 26.08° 

b. Graphical Method  

From force diagram we get; 

Free body diagram
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∴ 𝑅 = 𝑜�̅� × 𝑠𝑐𝑎𝑙𝑒 = 8.7 × 2 = 17.4  𝑘𝑁 

∴ 𝜃𝑅 = 26°  
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Example: 5 

Determine the resultant R of the two forces applied to the bracket. Write R in 

terms of unit vectors along the x- and y-axes shown. 

 

Solution: 

I. Analytical Method  

From the free body diagram, we get; 

∑ 𝒙 =  𝟎𝟎 𝐜𝐨𝐬  𝟓𝒐 −  𝟓𝟎 𝐜𝐨𝐬 𝟔𝟎𝒐

= 𝟖𝟖. 𝟖 𝟎𝟒 𝑵 

∑ 𝒚 =  𝟎𝟎 𝐬𝐢𝐧  𝟓𝒐 +  𝟓𝟎 𝐬𝐢𝐧 𝟔𝟎𝒐 =

 𝟒𝟒. 𝟔  𝑵  

The resultant force can be given as 

 = √(∑ 𝒙) + (∑ 𝒚)
 
=

√(𝟖𝟖. 𝟖 𝟎𝟒) + ( 𝟒𝟒. 𝟔 ) =  𝟔𝟎.  𝟓 𝑵  

The angle of the resultant force can be given using the Equation; 

𝝋 = 𝐭𝐚𝐧− 
∑ 𝒚
∑ 𝒙

= 𝐭𝐚𝐧− 
 𝟒𝟒. 𝟔 

𝟖𝟖. 𝟖 𝟎𝟒
= 𝟕𝟎. 𝟎𝟒𝒐 

∴  = 𝝋 = 𝟕𝟎. 𝟎𝟒𝒐 

II. Graphical Method  

From force diagram we get; 
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∴ 𝑅 = 𝑜𝑏̅̅ ̅ × 𝑠𝑐𝑎𝑙𝑒 = 10.3 × 25 = 257.5  𝑘𝑁 

∴ 𝜃𝑅 = 70°  
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Example: 6 

At what angle must the 400 N force be applied in order that the resultant R of 

the two forces have a magnitude of 1000 N? For this condition what will be the 

angle between R and the horizontal? 

 

Solution: 

Analytical Method  

From the free body diagram, we get; 

The resultant force can be given as 

 = √(  ) + (  ) +      𝐜𝐨𝐬   

∴ ( 𝟎𝟎𝟎) = (𝟒𝟎𝟎 ) + (𝟕𝟎𝟎 ) 

+ ( × 𝟒𝟎𝟎 × 𝟕𝟎𝟎 × 𝐜𝐨𝐬  ) 

∴ 𝐜𝐨𝐬  =
( 𝟎𝟎𝟎) − (𝟒𝟎𝟎 ) − (𝟕𝟎𝟎 ) 

( × 𝟒𝟎𝟎 × 𝟕𝟎𝟎)
 

∴  = 𝐜𝐨𝐬− [
( 𝟎𝟎𝟎) − (𝟒𝟎𝟎 ) − (𝟕𝟎𝟎 ) 

( × 𝟒𝟎𝟎 × 𝟕𝟎𝟎)
] = 𝟓 .   𝒐 

∑ 𝒙 = −𝟒𝟎𝟎 𝐜𝐨𝐬  𝒐 − 𝟕𝟎𝟎 = −𝟗𝟓𝟎. 𝟎𝟒 𝑵  

∑ 𝒚 = 𝟒𝟎𝟎 𝐬𝐢𝐧  𝒐 =    .    𝑵  

The angle of the resultant force can be given using the Equation; 

𝜷 = 𝐭𝐚𝐧− 
∑ 𝒚
∑ 𝒙

= 𝐭𝐚𝐧− 
   .   

−𝟗𝟓𝟎. 𝟎𝟒
=  𝟖.  𝟗𝒐 

 

𝟒𝟎𝟎 𝑵

𝟕𝟎𝟎 𝑵

𝒙

𝒚
  = 𝟒𝟎𝟎 𝑵

  = 𝟕𝟎𝟎 𝑵

 
𝟒𝟎𝟎 𝐜𝐨𝐬  𝒐

𝟒
𝟎
𝟎
 𝐬
𝐢𝐧
 
𝒐

Free body diagram
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FUNDAMENTAL PROBLEMS 

1. Determine the magnitude of the resultant force acting on the screw eye and 

its direction measured clockwise from the x axis. 

 

2. Two forces act on the hook. Determine the magnitude of the resultant force. 

 

3. The vertical force F acts downward at A on the two membered frame. 

Determine the magnitudes of the two components of F directed along the 

axes of AB and AC. Set F = 500 N. 

 

 

4. Solve Prob. 3 with F = 350 N. 
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Chapter (2) 

Moment of a force 

Objective 

■ To discuss the concept of the moment of a force and show how to calculate 

it in two and three dimensions. 

■ To provide a method for finding the moment of a force about a specified axis. 

 

Introduction 

When a force is applied to a body it will produce a tendency for the body to 

rotate about a point that is not on the line of action of the force. This tendency 

to rotate is sometimes called a torque, but most often it is called the moment of 

a force or simply the moment. For example, consider a wrench used to unscrew 

the bolt in Fig. 6 (a) . If a force is applied to the handle of the wrench it will 

tend to turn the bolt about point O (or the z axis). The magnitude of the moment 

is directly proportional to the magnitude of F and the perpendicular distance or 

moment arm d. The larger the force or the longer the moment arm, the greater 

the moment or turning effect. Note that if the force F is applied at an angle θ ≠ 

90° , Fig. 6 (b) , then it will be more difficult to turn the bolt since the moment 

arm d' = d sin θ will be smaller than d . If F is applied along the wrench, Fig. 6 

(c), its moment arm will be zero since the line of action of F will intersect point 

O (the z axis). As a result, the moment of F about O is also zero and no turning 

can occur. 

 

Fig. 6: 

We can generalize the above discussion and consider the force F and point O 

which lie in the shaded plane as shown in Fig. 7 (a). The moment MO about 
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point O, or about an axis passing through O and perpendicular to the plane, is 

a vector quantity since it has a specified magnitude and direction. 

 

 

Fig. 7: 

Magnitude. The magnitude of MO is 

𝑀𝑂 = 𝐹 × 𝑑                                                                                                         (3) 

Where d is the moment arm or perpendicular distance from the axis at point O 

to the line of action of the force. Units of moment magnitude consist of force 

times distance, e.g., N.m or lb. ft. 

Direction. The direction of MO is defined by its moment axis, which is 

perpendicular to the plane that contains the force F and its moment arm d. The 

right-hand rule is used to establish the sense of direction of MO. According to 

this rule, the natural curl of the fingers of the right hand, as they are drawn 

towards the palm, represent the rotation, or if no movement is possible, there is 

a tendency for rotation caused by the moment. As this action is performed, the 

thumb of the right hand will give the directional sense of MO, Fig. 7 (a). Notice 

that the moment vector is represented three-dimensionally by a curl around an 

arrow. In two dimensions this vector is represented only by the curl as in Fig. 

7 (b). Since in this case the moment will tend to cause a counterclockwise 

rotation, the moment vector is actually directed out of the page. 

 

Resultant Moment. For two-dimensional problems, where all the forces lie 

within the x–y plane, Fig. 8, the resultant moment (MR)O about point O (the z 

axis) can be determined by finding the algebraic sum of the moments caused 
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by all the forces in the system. As a convention, we will generally consider 

positive moments as counterclockwise since they are directed along the 

positive z axis (out of the page). Clockwise moments will be negative. Doing 

this, the directional sense of each moment can be represented by a plus or minus 

sign. Using this sign convention, the resultant moment in Fig. 8 is therefo 

+(𝑀𝑅)𝑂 = ∑𝐹𝑑;                 (𝑀𝑅)𝑂 = 𝐹1𝑑1 − 𝐹2𝑑2 + 𝐹3𝑑3 

 

 
Fig. 8: 

 

If the numerical result of this sum is a positive scalar, (MR)O will be a 

counterclockwise moment (out of the page); and if the result is negative, (MR)O 

will be a clockwise moment (into the page). 

 

Example: 1 

For each case illustrated in Fig. 9, determine the moment of the force about 

point O. 

 
 

Fig. 9 

 

Solution: 
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The line of action of each force is extended as a dashed line in order to establish 

the moment arm d. Also illustrated is the tendency of rotation of the member 

as caused by the force. Furthermore, the orbit of the force about O is shown as 

a colored curl. Thus, 

 

Fig. 9 (a)        𝑀𝑂 = (100 𝑁)(2 𝑚) = 200 𝑁.𝑚      

 

Fig. 9 (b)        𝑀𝑂 = (50 𝑁)(0.75 𝑚) = 37.5 𝑁.𝑚 

 

Fig. 9 (c)        𝑀𝑂 = (40 𝐼𝑏)(4 𝑓𝑡 + 2 cos 30𝑜 𝑓𝑡) = 229 𝐼𝑏. 𝑓𝑡 
 

Fig. 9 (d)        𝑀𝑂 = (60 𝐼𝑏)(1 sin 45𝑜  𝑓𝑡) = 42.4 𝐼𝑏. 𝑓𝑡 
 

Fig. 9 (b)        𝑀𝑂 = (7 𝑘𝑁)(4 𝑚 − 1𝑚) = 21.0 𝑘𝑁.𝑚 

 

 

Example: 2 

Determine the resultant moment of the four forces acting on the rod shown in 

Fig. 10 about point O. 

 
Fig. 10 

Solution: 
Assuming that positive moments act in the +k direction, i.e., counterclockwise, 

we have 

 

 

+(𝑀𝑅)𝑂 = ∑𝐹𝑑;     

      
(𝑀𝑅)𝑂 = −50 𝑁(2 𝑚) + 60 𝑁 (0) + 20 𝑁 (3 sin 30𝑜𝑚) − 40 𝑁 (4 𝑚 +
3 cos 30𝑜𝑚)   
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∴ (𝑀𝑅)𝑂 = −334 𝑁.𝑚 = 334 𝑁.𝑚  
 

For this calculation, note how the moment-arm distances for the 20-N and 40-

N forces are established from the extended (dashed) lines of action of each of 

these forces. 

 

 

 

Example: 3 

Calculate the magnitude of the moment about the base 

point O of the 600-N 

force in five different ways. 

 

Solution:  

(I) The moment arm to the 600-N force is 

 

 

 

       d = 4 cos 40o + 2 sin 40o = 4.35 m 

(1)      By M = Fd   the moment is clockwise and has the 

magnitude 

      MO = 600(4.35) = 2610 N .m        Ans. 

 

(II) Replace the force by its rectangular components at A, 

F1 = 600 cos 40o = 460 N,     F2 = 600 sin 40o = 386 N 

By Avignon's theorem, the moment becomes 

(2)     MO = 460(4) + 386(2) = 2610 N .m          Ans. 
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Example: 4 

Calculate the moment of the 250-N force on the handle of the monkey wrench 

about the center of the bolt. 

 
Solution:  

 

The moment about the center of the bolt. 

 
 

𝑀 = (250 sin 15𝑜 × 30) − (250 cos 15𝑜 × 200) = −46867.66 𝑁.𝑚 

 

∴ 𝑀 = 46867.66 𝑁.𝑚 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 𝟓𝟎𝐜𝐨𝐬  𝟓𝒐

 𝟓𝟎 𝐬𝐢𝐧 𝟓𝒐
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FUNDAMENTAL PROBLEMS 

 

1. Determine the moment of the force about point O . 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Part I: Statics  Engineering Mechanics 1405-211 

 

Page | 22  
Dr-Mamdouh El-Elamy 

Chapter (3) 

Equilibrium of a Rigid Body 
 

1. OBJECTIVES 

■ To develop the equations of equilibrium for a rigid body. 

■ To introduce the concept of the free-body diagram for a rigid body. 

■ To show how to solve rigid-body equilibrium problems using the 

equations of equilibrium. 

 

2. Conditions for Rigid-Body Equilibrium 

In this section, we will develop both the necessary and sufficient conditions for 

the equilibrium of the rigid body in Fig. 11. As shown, this body is subjected 

to an external force and couple moment system that is the result of the effects 

of gravitational, electrical, magnetic, or contact forces caused by adjacent 

bodies. The internal forces caused by interactions between particles within the 

body are not shown in this figure because these forces occur in equal but 

opposite collinear pairs and hence will cancel out, a consequence of Newton’s 

third law. 

 
Fig. 11 

 

3. Free-Body Diagrams 

Successful application of the equations of equilibrium requires a complete 

specification of all the known and unknown external forces that act on the body. 

The best way to account for these forces is to draw a free-body diagram. This 

diagram is a sketch of the outlined shape of the body, which represents it as 

being isolated or “free” from its surroundings, i.e., a “free body.” On this sketch 

it is necessary to show all the forces and couple moments that the surroundings 

exert on the body so that these effects can be accounted for when the equations 
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of equilibrium are applied. A thorough understanding of how to draw a free-

body diagram is of primary importance for solving problems in mechanics. 

4. Support Reactions  

Before presenting a formal procedure as to how to draw a free-body diagram, 

we will first consider the various types of reactions that occur at supports and 

points of contact between bodies subjected to coplanar force systems. As a 

general rule, 

• If a support prevents the translation of a body in a given direction, then a force 

is developed on the body in that direction. 

• If rotation is prevented, a couple moment is exerted on the body.  

For example, let us consider three ways in which a horizontal member, such as 

a beam, is supported at its end. One method consists of a roller or cylinder, Fig. 

12 (a). Since this support only prevents the beam from translating in the 

vertical direction, the roller will only exert a force on the beam in this direction, 

Fig. 12 (b). 

The beam can be supported in a more restrictive manner by using a pin, Fig. 12 

(c). The pin passes through a hole in the beam and two leaves which are fixed 

to the ground. Here the pin can prevent translation of the beam in any direction 

f, Fig. 12 (d), and so the pin must exert a force F on the beam in this direction. 

For purposes of analysis, it is generally easier to represent this resultant force 

F by its two rectangular components Fx and Fy, Fig. 12 (e). If Fx and Fy are 

known, then F and f can be calculated. 

The most restrictive way to support the beam would be to use a fixed support 

as shown in Fig. 12 (f). This support will prevent both translation and rotation 

of the beam. To do this a force and couple moment must be developed on the 

beam at its point of connection, Fig. 12 (g). As in the case of the pin, the force 

is usually represented by its rectangular components Fx and Fy. 

Table 1 lists other common types of supports for bodies subjected to coplanar 

force systems. (In all cases the angle u is assumed to be known.) Carefully study 

each of the symbols used to represent these supports and the types of reactions 

they exert on their contacting members.  
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Fig. 12. 
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5. Equations of Equilibrium 

In Sec. 2 we developed the two equations which are both necessary and 

sufficient for the equilibrium of a rigid body, namely, ∑F = 0 and ∑MO = 0. 

When the body is subjected to a system of forces, which all lie in the x – y 

plane, then the forces can be resolved into their x and y components. 

Consequently, the conditions for equilibrium in two dimensions are 

∑𝐹𝑥 = 0  

∑𝐹𝑦 = 0  
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∑𝑀𝑂 = 0  

Example: 1 

Draw the free-body diagram of the uniform beam shown in Fig. 13. The beam 

has a mass of 100 kg. And determine the reactions moment and forces. 

 

Fig. 13. 

Solution: 
 

The free-body diagram of the beam is shown in Fig. 14. Since the support at A 

is fixed, the wall exerts three reactions on the beam, denoted as Ax, Ay, and MA. 

The magnitudes of these reactions are unknown, and their sense has been 

assumed. The weight of the beam, W = 100(9.81) N = 981 N, acts through the 

beam’s center of gravity G, which is 3 m from A since the beam is uniform. 

 

Fig. 14. 

From the equilibrium conditions we get; 

∑𝐹𝑥 = 0   ∴ 𝐴𝑥 = 0  

∑𝐹𝑦 = 0   ∴ 𝐴𝑦 = 1200 + 981 = 2181 𝑁  

∑𝑀𝑂 = 0 ∴ 𝑀𝐴 = (981 𝑁 × 3 𝑚) + (1200 𝑁 × 2 𝑚) = 5343 𝑁.𝑚   
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Example: 2 

Determine the magnitude T of the tension in 

the supporting cable and the magnitude of the 

force on the pin at A for the jib crane shown. 

The beam AB is a standard 0.5-m I-beam with 

a mass of 95 kg per meter of length. 

Solution: 
Algebraic solution.  

The system is symmetrical about the vertical 

x-y plane through the center of the beam, so 

the problem may be analyzed as the equilibrium of a coplanar force system. 

The free-body diagram of the beam is shown in the figure with the pin reaction 

at A represented in terms of its two rectangular components. The weight of the 

beam is 95(103)(5)9.81 = 4.66 kN and acts through its center. Note that there 

are three unknowns Ax, Ay, and T, which may be found from the three equations 

of equilibrium. We begin with a moment equation about A, which eliminates 

two of the three unknowns from the equation. In applying the moment equation 

about A, it is simpler to consider the moments of the x- and y-components of T 

than it is to compute the perpendicular distance from T to A. Hence, with the 

counterclockwise sense as positive we write 

[∑𝑀𝐴 = 0]    (𝑇 cos 25𝑜)0.25 + (𝑇 sin 25𝑜)(5 − 0.12) − 10(5 − 1.5 −

0.12) − 4.66(2.5 − 0.12) = 0  

      From which                              𝑇 = 19.61 𝑘𝑁                                Ans. 

Equating the sums of forces in the x- and y-directions to zero gives 

[∑𝐹𝑥 = 0]                 𝐴𝑥 − 19.61 cos 25𝑜 = 0     ∴ 𝐴𝑥 = 17.77 𝑘𝑁 

[∑𝐹𝑦 = 0]                 𝐴𝑦 + 19.61 sin 25𝑜 − 466 − 10 = 0     ∴ 𝐴𝑦 = 6.37 𝑘𝑁 

|𝐴 = √𝐴𝑥
2 + 𝐴𝑦

2|       𝐴 = √(17.77)2 + (6.37)2 = 18.88 𝑘𝑁                  Ans. 
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Graphical solution.  

The principle that three forces in equilibrium must be concurrent is utilized for 

a graphical solution by combining the two known vertical forces of 4.66 and 

10 kN into a single 14.66-kN force, located as shown on the modified free-body 

diagram of the beam in the lower figure. The position of this resultant load may 

easily be determined graphically or algebraically. The intersection of the 14.66-

kN force with the line of action of the unknown tension T defines the point of 

concurrency O through which the pin reaction A must pass. The unknown 

magnitudes of T and A may now be found by adding the forces head-to-tail to 

form the closed equilibrium polygon of forces, thus satisfying their zero-vector 

sum. After the known vertical load is laid off to a convenient scale, as shown 

in the lower part of the figure, a line representing the given direction of the 

tension T is drawn through the tip of the 14.66-kN vector. Likewise, a line 

representing the direction of the pin reaction A, determined from the 

concurrency established with the free-body diagram, is drawn through the tail 

of the 14.66-kN vector. The intersection of the lines representing vectors T and 

A establishes the magnitudes T and A necessary to make the vector sum of the 

forces equal to zero. These magnitudes are scaled from the diagram. The x- and 

y-components of A may be constructed on the force polygon if desired. 
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Example: 3 

The uniform beam has a mass of 50 kg per meter of length. Determine the 

reactions at the supports. 

 

Solution: 
From the free-body diagram we get 

[∑𝐹𝑥 = 0]   ∴ 𝑅𝐵𝑥 = 0 

[∑𝐹𝑦 = 0]    ∴ 𝑅𝐴𝑦 + 𝑅𝐵𝑦 = 300 + 180 = 480 𝑘𝑁                              (1) 

[∑𝑀𝐴 = 0]       (300 × 2.4) + (180 × 1.8) − (𝑅𝐵𝑦 × 3.6) = 0 

𝑅𝐵𝑦 =
(300 × 2.4) + (180 × 1.8)

3.6
= 290 𝑘𝑁 

From Eqn. (1)    ∴ 𝑅𝐴𝑦 = 480 − 290 = 190 𝑘𝑁 

 

 

 

 

 

 

 . 𝟖  . 𝟖

 .  𝟎. 𝟔

 𝟎𝟎    𝟖𝟎   

  𝒚   𝒚

  𝒙
= 𝟎

Free-body diagram
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Example: 4 

The 500-kg uniform beam is subjected to the three external loads shown. 

Compute the reactions at the support point O. The x-y plane is vertical. 

 

Solution: 
From the free-body diagram we get 

 

[∑𝐹𝑥 = 0]   𝑅𝑂𝑥 − 1.36 = 0                   ∴ 𝑅𝑂𝑥 = 1.36 𝑘𝑁 

[∑𝐹𝑦 = 0]    ∴ 𝑅0𝑦 + 1.4 − 5 − 2.67 = 0     ∴ 𝑅𝑂𝑦 = 6.27 𝑘𝑁                          

[∑𝑀0 = 0]       (2.67 × 4.8) + (5 × 2.4) − 15 − (1.4 × 1.2) − 𝑀0 = 0 

∴ 𝑀0 = 8.136 𝑘𝑁.𝑚   𝐶𝐶𝑊 

 

 

 

 

 

 

 

  𝒚

  𝒙

  

 . 𝟔𝟕  𝑵

 .  𝟔  𝑵

Free-body diagram

𝟓  𝑵
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Example: 5 

Determine the horizontal and vertical components of reaction on the beam 

caused by the pin at B and the rocker at A as shown in Fig.. Neglect the weight 

of the beam. 

 

Solution: 
From the free-body diagram we get 

 

Equations of Equilibrium. Summing forces in the x direction yields 

+
→∑𝐹𝑥 = 0;           600 cos 45𝑜 − 𝑅𝐵𝑥 = 0 

                                                ∴ 𝑅𝐵𝑥 = 424 𝑁                      Ans. 

A direct solution for Ay can be obtained by applying the moment 

equation +↺ ∑𝑀𝐵 = 0 about point B. 

↺ +∑𝑀𝐵 = 0;        

   (100 × 2) + (600 sin 45𝑜 × 5) − (600 cos45𝑜 × 2) − (𝑅𝐴𝑦 × 7) = 0  

                                                ∴ 𝑅𝐴𝑦 = 319 𝑁                     Ans.                          

Summing forces in the y direction, using this result, gives 

+↑ ∑𝐹𝑦 = 0;       319 − 600 sin 45𝑜 − 100 − 200 + 𝑅𝐵𝑦 = 0 

                                                ∴ 𝑅𝐵𝑦 = 405 𝑁                     Ans 



  Part I: Statics  Engineering Mechanics 1405-211 

 

Page | 32  
Dr-Mamdouh El-Elamy 

FUNDAMENTAL PROBLEMS 

1.  Draw the free-body diagram of the dumpster D of the truck, which has a 

mass of 2.5 Mg and a center of gravity at G. It is supported by a pin at A and 

a pin-connected hydraulic cylinder BC (short link). Determine the 

horizontal and vertical components 

 

2. Determine the support reactions on the member. The collar at A is fixed to 

the member and can slide vertically along the vertical shaft. 

 

 

3. Determine the horizontal and vertical components of reaction on the beam 

caused by the pin at B and the rocker at A as shown in Figure. Neglect the 

weight of the beam. 

 

4. The jib crane is pin connected at A and supported by a smooth collar at B. 

Determine the roller placement x of the 5000-lb load so that it gives the 
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maximum and minimum reactions at the supports. Calculate these reactions 

in each case. Neglect the weight of the crane. Require 4 ft ≤ x ≤ 10 ft. 

 

5. The crane consists of three parts, which have weights of W1 = 3500 lb, W2 

= 900 lb, W3 = 1500 lb and centers of gravity at G1, G2, and G3, respectively. 

Neglecting the weight of the boom, determine (a) the reactions on each of 

the four tires if the load is hoisted at constant velocity and has a weight of 

800 lb, and (b), with the boom held in the position shown, the maximum 

load the crane can lift without tipping over. 

 

6. The cantilevered jib crane is used 

to support the load of 780 lb. If 

the trolley T can be placed 

anywhere between 1.5 ft ≤ x ≤ 7.5 

ft, determine the maximum 

magnitude of reaction at the 

supports A and B. Note that the 

supports are collars that allow the 

crane to rotate freely about the 

vertical axis. The collar at B 

supports a force in the vertical direction, whereas the one at A does not. 
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Chapter (4) 

Friction 

CHAPTER OBJECTIVES 

■ To introduce the concept of dry friction and show how to analyze the 

equilibrium of rigid bodies subjected to this force. 

■ To present specific applications of frictional force analysis on wedges, 

screws, belts, and bearings. 

■ To investigate the concept of rolling resistance 

 

1. Characteristics of Dry Friction 

Friction is a force that resists the movement of two contacting surfaces that 

slide relative to one another. This force always acts tangent to the surface at 

the points of contact and is directed so as to oppose the possible or existing 

motion between the surfaces. 

In this chapter, we will study the effects of dry friction, which is sometimes 

called Coulomb friction since its characteristics were studied extensively by C. 

A. Coulomb in 1781. Dry friction occurs between the contacting surfaces of 

bodies when there is no lubricating fluid. * 

2. Theory of Dry Friction.  

The theory of dry friction can be explained by considering the effects caused 

by pulling horizontally on a block of uniform weightW which is resting on a 

rough horizontal surface that is nonrigid or deformable, Fig. 1 (a). The upper 

portion of the block, however, can be considered rigid. As shown on the free-

body diagram of the block, Fig. 1 (b), the floor exerts an uneven distribution of 

both normal force ΔNn and frictional force ΔFn along the contacting surface. 

For equilibrium, the normal forces must act upward to balance the block’s 

weight W, and the frictional forces act to the left to prevent the applied force P 

from moving the block to the right. Close examination of the contacting 

surfaces between the floor and block reveals how these frictional and normal 

forces develop, Fig. 1 (c). It can be seen that many microscopic irregularities 

exist between the two surfaces and, as a result, reactive forces ΔRn are 

developed at each point of contact. As shown, each reactive force contributes 

both a frictional component ΔFn and a normal component ΔNn. 
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Fig. 1 

 

Equilibrium. The effect of the distributed normal and frictional loadings is indicated 

by their resultants N and F on the free-body diagram, Fig. 1 (d). Notice that N acts a 

distance x to the right of the line of action of W, Fig. 1 (d). This location, which 

coincides with the centroid or geometric center of the normal force distribution in 

Fig. 1(b), is necessary in order to balance the “tipping effect” caused by P. For 

example, if P is applied at a height h from the surface, Fig. 1 (d), then moment 

equilibrium about point O is satisfied if Wx = Ph or x = Ph/W. 

Impending Motion. In cases where the surfaces of contact are rather “slippery,” the 

frictional force F may not be great enough to balance P, and consequently the block 

will tend to slip. In other words, as P is slowly increased, F correspondingly increases 

until it attains a certain maximum value Fs, called the limiting static frictional force, 

Fig. 1 (e). When this value is reached, the block is in unstable equilibrium since any 

further increase in P will cause the block to move. Experimentally, it has been 

determined that this limiting static frictional force Fs is directly proportional to the 

resultant normal force N. Expressed mathematically, 

 

 
Fig. 1 (cont.) 

𝐹𝑠 = 𝜇𝑠𝑁                                                                                                                   (1) 
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Where the constant of proportionality, µs (mu “sub” s), is called the coefficient of 

static friction. 

Thus, when the block is on the verge of sliding, the normal force N and frictional 

force Fs combine to create a resultant Rs, Fig. 1 (e). The angle ϕs (phi “sub” s) that Rs 

makes with N is called the angle of static friction. 

From the figure, 

 

𝜙𝑠 = tan−1 (
𝐹𝑠
𝑁
) = tan−1 (

𝜇𝑠𝑁

𝑁
) = tan−1 𝜇𝑠                                                          (2) 

 

Typical values for µs are given in Table 1. Note that these values can vary since 

experimental testing was done under variable conditions of roughness and cleanliness 

of the contacting surfaces. For applications, therefore, it is important that both caution 

and judgment be exercised when selecting a coefficient of friction for a given set of 

conditions. When a more accurate calculation of Fs is required, the coefficient of 

friction should be determined directly by an experiment that involves the two 

materials to be used. 

 
 

Motion. If the magnitude of P acting on the block is increased so that it becomes 

slightly greater than Fs, the frictional force at the contacting surface will drop to a 

smaller value Fk, called the kinetic frictional force. 

The block will begin to slide with increasing speed, Fig. 2 (a). As this occurs, the 

block will “ride” on top of these peaks at the points of contact, as shown in Fig. 2 (b). 

The continued breakdown of the surface is the dominant mechanism creating kinetic 

friction. 
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Experiments with sliding blocks indicate that the magnitude of the kinetic friction 

force is directly proportional to the magnitude of the resultant normal force, expressed 

mathematically as 

 

 
Fig. 2 

𝐹𝐾 = 𝜇𝑘𝑁                                                                                                                   (3) 

 

Here the constant of proportionality, µk, is called the coefficient of kinetic 

friction. Typical values for mk are approximately 25 percent smaller than 

those listed in Table 1 for µs. 

As shown in Fig. 2 (a), in this case, the resultant force at the surface of contact, 

Rk, has a line of action defined by ϕk. This angle is referred to as the angle of 

kinetic friction, where 

 

𝜙𝑘 = tan−1 (
𝐹𝑘
𝑁
) = tan−1 (

𝜇𝑘𝑁

𝑁
) = tan−1 𝜇𝑘                                                        (4) 

 

By comparison, 𝜙𝑠 ≥ 𝜙𝑘. 

 

 

The above effects regarding friction can be summarized by referring to the graph in 

Fig. 3, which shows the variation of the frictional force F versus the applied load P. 

Here the frictional force is categorized in three different ways: 
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Fig. 3 

 

• F is a static frictional force if equilibrium is maintained. 

• F is a limiting static frictional force Fs when it reaches a maximum value needed 

to maintain equilibrium. 

• F is a kinetic frictional force Fk when sliding occurs at the contacting surface. 

Notice also from the graph that for very large values of P or for high speeds, 

aerodynamic effects will cause Fk and likewise µk to begin to decrease. 

 

Characteristics of Dry Friction. As a result of experiments that pertain to the 

foregoing discussion, we can state the following rules which apply to bodies 

subjected to dry friction. 

• The frictional force acts tangent to the contacting surfaces in a direction opposed to 

the motion or tendency for motion of one surface relative to another. 

• The maximum static frictional force Fs that can be developed is independent of the 

area of contact, provided the normal pressure is not very low nor great enough to 

severely deform or crush the contacting surfaces of the bodies. 

• The maximum static frictional force is generally greater than the kinetic frictional 

force for any two surfaces of contact. However, if one of the bodies is moving with a 

very low velocity over the surface of another, Fk becomes approximately equal to Fs, 

i.e., µs ≈ µk. 

• When slipping at the surface of contact is about to occur, the maximum static 

frictional force is proportional to the normal force, such that Fs = µsN. 

• When slipping at the surface of contact is occurring, the kinetic frictional force is 

proportional to the normal force, such that Fk = µkN. 
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Example: 1 

Determine the maximum angle θ which 

the adjustable incline may have with the 

horizontal before the block of mass m 

begins to slip. The coefficient of static 

friction between the block and the 

inclined surface is µs. 

Solution:  

The free-body diagram of the block shows its weight 

W = mg, the normal force N, and the friction force F 

exerted by the incline on the block. The friction force 

acts in the direction to oppose the slipping which 

would occur if no friction were present. 

Equilibrium in the x- and y-directions requires 

 

[∑𝐹𝑥 = 0]    𝑚𝑔 sin 𝜃 − 𝐹 = 0       ∴ 𝐹 =  𝑚𝑔 sin 𝜃 

 

[∑𝐹𝑦 = 0]    −𝑚𝑔 cos 𝜃 + 𝑁 = 0       ∴ 𝑁 =  𝑚𝑔 cos 𝜃 

Dividing the first equation by the second gives F/N = tan θ. Since the 

maximum angle occurs when F = Fmax = µsN, for impending motion we have 

 

𝜇𝑠 = tan𝜃𝑚𝑎𝑥        or         𝜃𝑚𝑎𝑥 = tan−1 𝜇𝑠 

 

Example: 2 

Determine the range of values which the mass 

m0 may have so that the 100-kg block shown in 

the figure will neither start moving up the plane 

nor slip down the plane. The coefficient of 

static friction for the contact surfaces is 0.30. 

 

Solution:  

The maximum value of m0 will be given by the 

requirement for motion impending up the plane. 

The friction force on the block therefore acts 

down 
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the plane, as shown in the free-body diagram of the block for Case I in the 

figure. With the weight mg = 100(9.81) = 981 N, the equations of equilibrium 

give 

 

 

[∑𝐹𝑦 = 0]    𝑁 −𝑚𝑔 cos 20𝑜 = 0       ∴ 𝑁 =  922 𝑁 

𝐹𝑚𝑎𝑥 = 𝜇𝑠𝑁              ∴ 𝐹𝑚𝑎𝑥 = 0.30 × 922 = 277 𝑁 

 

[∑𝐹𝑥 = 0]    𝑚09.81 − 277 − 981 sin 20𝑜 = 0   ∴ 𝑚0 =  62.4 𝑘𝑔     Ans. 

 

The minimum value of m0 is determined when 

motion is impending down the plane. The friction 

force on the block will act up the plane to oppose 

the tendency to move, as shown in the free-body 

diagram for Case II. Equilibrium in the x-

direction requires 

 

[∑𝐹𝑥 = 0]    𝑚09.81 + 277 − 981 sin 20𝑜 = 0   ∴ 𝑚0 =  6.01 𝑘𝑔     Ans. 

 

Thus, m0 may have any value from 6.01 to 62.4 kg, and the block will remain 

at rest. 

In both cases equilibrium requires that the resultant of Fmax and N be concurrent 

with the 981 N weight and the tension T. 

 

Example: 3 

Determine the minimum force P to prevent 

the 30-kg rod AB from sliding. The contact 

surface at B is smooth, whereas the 

coefficient of static friction between the rod 

and the wall at A is μs = 0.2.  

 

Solution:  

From free body diagram we get; 
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Bu using the equilibrium conditions  

1 − ∑𝑀𝐵 = 0  

∴ (𝑁𝐴 × 3) + (𝐹 × 4) − (𝑊 × 2) = 0  

𝐹 = 𝜇𝑆𝑁𝐴 = 0.2𝑁𝐴 

∴ (3𝑁𝐴) + (0.2 × 4𝑁𝐴) = (2𝑊)  

∴ 𝑁𝐴 =
2𝑊

[3 + (0.2 × 4)]

=
2 × 300 × 9.81

[3 + (0.2 × 4)]

= 154.89 𝑁 

2 − ∑𝐹𝑥 = 0  

∴ 𝑃 − 𝑁𝐴 = 0  

∴ 𝑃 = 154.89 𝑁 

 

Example: 4 

The uniform crate shown in Figure has a 

mass of 20 kg. If a force P = 80 N is 

applied to the crate, determine if it remains 

in equilibrium. The coefficient of static 

friction is µs = 0.3. 

 

Solution:  

From Free-Body Diagram. the resultant normal force NC must act a distance 

x from the crate’s center line in order to counteract the tipping effect caused 

by P. There are three unknowns, F, NC, and x, which can be determined 

strictly from the three equations of equilibrium. 

Equations of Equilibrium. 

∑𝐹𝑥 = 0            ∴ 80 cos 30𝑜 − 𝐹 = 0 

∴ 𝐹 = 80 cos 30𝑜 = 69.3 𝑁 

∑𝐹𝑦 = 0            ∴ −80 sin 30𝑜 +𝑁𝐶 − 196.2 =

0 

∑𝑀0 = 0            ∴ 80 sin 30𝑜 (0.4) −

80 cos 30𝑜 (0.2) + 𝑁𝐶(𝑥) = 0 

  

𝑵 

𝑵 

  

    

Free body diagram
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∴ 𝑁𝐶 = 236.2 𝑁        and    x = -0.00908 m = -9.08 mm 

Since x is negative it indicates the resultant normal force acts (slightly) to 

the left of the crate’s center line. No tipping will occur since x < 0.4 m. Also, 

the maximum frictional force which can be developed at the surface of 

contact is Fmax = µsNC = 0.3(236.2 N) = 70.9 N. 

Since F = 69.3 N < 70.9 N, the crate will not slip, although it is very close to 

doing so. 

 

Example: 5 

The uniform 10-kg ladder shown in Figure rests 

against the smooth wall at B, and the end A rests on 

the rough horizontal plane for which the coefficient 

of static friction is µs = 0.3. Determine the angle of 

inclination θ of the ladder and the normal reaction 

at B if the ladder is on the verge of slipping. 

Answer:  

from the free body diagram, we have 

by using the equilibrium conditions 

∑𝐹𝑥 = 0  ∴ 𝐹𝑟 −𝑁𝐵 = 0         ∴ 𝐹𝑟 = 𝑁𝐵          (1) 

∑𝐹𝑌 = 0    ∴ 𝑁𝐴 −𝑊 = 0         ∴ 𝑁𝐴 = 𝑊       (2) 

From Eqn. (2)     ∴ 𝑁𝐴 = 10 × 9.81 = 98.1 𝑁 

∵ 𝐹𝑟 = 𝜇𝑠𝑁𝐴 = 0.3 × 98.1 = 29.43 𝑁 

From Eqn. (1)     ∴ 𝑁𝐵 = 𝐹𝑟 = 29.43 𝑁 

∑𝑀𝐴 = 0      ∴ 𝑁𝐵 × ℎ −𝑊 × (𝐿 2⁄ ) = 0 

∴ 𝑁𝐵 × ℎ = 𝑊 × (𝐿 2⁄ )                                        (3) 

From the triangle  

ℎ = 4 𝑠𝑖𝑛 𝜃  and     𝐿 = 4 𝑐𝑜𝑠 𝜃  

From Eqn. (3) 

∴ 𝑁𝐵 × 4 𝑠𝑖𝑛 𝜃  = 𝑊 × (4 𝑐𝑜𝑠 𝜃 2⁄ )                                         

∴ 29.43  𝑠𝑖𝑛 𝜃  = 49.05 𝑐𝑜𝑠 𝜃 

Free body diagram

𝑵 

𝑵 
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∴ 𝜃 = tan−1
49.05

29.43
= 59.040 

 

Example: 6 

Determine the distance s to which the 90-kg painter 

can climb without causing the 4-m ladder to slip at its 

lower end A. The top of the 15-kg ladder has a small 

roller, and at the ground the coefficient of static 

friction is 0.25. The mass center of the painter is 

directly above her feet. 

Solution: 

𝐿 = √42 − 1.52 = 3.71 𝑚 

𝜃 = cos−1 (
1.5

4
) = 67.98𝑜 

By using the equilibrium conditions, we get 

 

∑𝐹𝑥 = 0    ∴ 𝐹 − 𝑅𝐵 = 0       ∴ 𝑅𝐵 = 𝐹 = 𝜇𝑅𝐴                                      (1) 

 

∑𝐹𝑦 = 0    ∴ 𝑅𝐴 − 900 − 150 = 0      ∴ 𝑅𝐴 = 900 + 150 = 1050 𝑁     (2) 

 

From Eqs. (1) and (2) 

∴ 𝑅𝐵 = 0.25 × 1050 = 262.5 𝑁 

 

∑𝑀𝐴 = 0     ∴ (𝑅𝐵 × 𝐿) − (150 × 0.75) −

(900 × 𝐿𝑆) = 0 

 

∴ 𝐿𝑆 =
(262.5 × 3.71) − (150 × 0.75)

900
= 0.957 𝑚 

 

∵ cos 𝜃 =
𝐿𝑆
𝑠

 

∴ 𝑠 =
𝐿𝑆

cos𝜃
=

0.957

cos 67.98𝑜
= 2.55 𝑚 

 

 

 

  

  

 

 𝟓𝟎 𝑵

𝟗𝟎𝟎 𝑵

S

𝟎. 𝟕𝟓𝟎. 𝟕𝟓
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Problems 

1. The 85-lb force P is applied to the 200-lb crate, which is stationary before 

the force is applied. Determine the magnitude and direction of the friction 

force F exerted by the horizontal surface on the crate. 

 

 
 

2. The 700-N force is applied to the 100-kg block, which is stationary before 

the force is applied. Determine the magnitude and direction of the friction 

force F exerted by the horizontal surface on the block. 

 

 
 

3. The coefficients of static and kinetic friction between the 100-kg block and 

the inclined plane are 0.30 and 0.20, respectively. Determine (a) the friction 

force F acting on the block when P is applied with a magnitude of 200 N to 

the block at rest, (b) the force P required to initiate motion up the incline 

from rest, and (c) the friction force F acting on the block if P = 600 N. 
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4. The magnitude of force P is slowly increased. Does the homogeneous box 

of mass m slip or tip first? State the value of P which would cause each 

occurrence. Neglect any effect of the size of the small feet. 
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Chapter (5) 

Area Moments of Inertia 

 

Solved problems: 

Example:1 

Determine the moment of inertia of the cross-sectional area 

of the channel with respect to the xo and yo axis. Also 

Determine the moment of inertia of the cross-sectional area 

of the channel with respect to the x axis. 

Solution: 

First, the geometric shape should be divided into a set of 

geometric shapes. 

From the figure can be divided into three parts. 

1. With respect to the xo axis 

Part: 1 

𝐼𝑥𝑜1 =
b1h1

3

12
+ A1𝑑1

2 = 

=
30 × 103

12
+ (30 × 10) × 352 = 370000 𝑚𝑚4 

Part: 2 

I𝑥02 =
b2h2

3

12
=
10 × 603

12
= 180000 𝑚𝑚4 

Part: 3 

I𝑥03 =
b3h3

3

12
+ A3𝑑3

2 = 

=
30 × 103

12
+ (30 × 10) × 352 = 370000 𝑚𝑚4 

𝐼𝑥𝑜 = 𝐼𝑥𝑜1 + I𝑥02 + I𝑥03 = 370000 + 180000 + 370000 = 920000 𝑚𝑚4          Ans. 

The radius of gyration: 

𝐴𝑡 = 𝐴1 + 𝐴2 + 𝐴3 = (30 × 10) + (60 × 10) + (30 × 10) = 1200 𝑚𝑚2 

 

30

10

10

60

10

𝒚𝒐

𝒙𝒐

25

𝒙

30

10

10

35

10

𝒚𝒐

𝒙𝒐

65

𝒙

35

1

2

3
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𝑘𝑥𝑜 = √
𝐼𝑥𝑜
𝐴
= √

920000

1200
= 27.69 𝑚 

 

2. With respect to the yo axis 

Part: 1 

𝐼𝑦𝑜1 =
h1b1

3

12
=
10 × 303

12
= 22500 𝑚𝑚4 

Part: 2 

𝐼𝑦𝑜2 =
h2b2

3

12
=
60 × 103

12
= 5000 𝑚𝑚4 

Part: 3 

𝐼𝑦𝑜3 =
h3b3

3

12
=
10 × 303

12
= 22500 𝑚𝑚4 

𝐼𝑦𝑜 = 𝐼𝑦𝑜1 + I𝑦02 + I𝑦03 = 22500 + 5000 + 22500 = 50000 𝑚𝑚4          Ans. 

The radius of gyration: 

𝑘𝑦𝑜 = √
𝐼𝑦𝑜
𝐴
= √

50000

1200
= 6.45 𝑚 

 

3. With respect to the x axis 

𝐼𝑥 = 𝐼𝑥𝑜 + 𝐴𝑡𝑑𝑥
2 

∴ 𝐼𝑥 = 920000 + (1200 × 652) = 5990000 𝑚𝑚4                                    Ans. 

The radius of gyration: 

𝑘𝑥 = √
𝐼𝑥
𝐴
= √

5990000

1200
= 70.65 𝑚 
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Example:2 

Determine the moment of inertia of the area about the y 

axis. 

Solution: 

A differential element of area that is parallel to the y axis, 

as shown in Figure, is chosen for integration. Since this 

element has a thickness dy and intersects the curve at the 

arbitrary point (x, y), its area is dA = y dx. Hence, 

integrating with respect to y , from x = 0 to x = 2 m, yields. 

𝐼𝑦 = ∫𝑥2 𝑑𝐴 

𝑑𝐴 = 𝑦𝑑𝑥 = (4 − 𝑥2)𝑑𝑥 

𝐼𝑦 = 2∫ (4𝑥2 − 𝑥4)
2

0

𝑑𝑥 = 2 |4
𝑥3

3
−
𝑥5

5
|
0

2

= 2 |4
23

3
−
25

5
|
0

2

= 2 ×
64

15
= 8.53 𝑚4 

 

 

Example:3 

Determine the moment of inertia for the rectangular area shown 

in Fig. 10–5 with respect to (a) the centroidal x- axis, (b) the axis 

xb passing through the base of the rectangle, and (c) the pole or z- 

axis perpendicular to the x-y plane and passing through the 

centroid O. 

 

 Solution:  

a. At the centroidal x-axis  

𝑑𝐼𝑥 = ∫𝑦2𝑑𝐴 

Where:  𝑑𝐴 = 𝑏. 𝑑𝑦 

∴ 𝐼𝑥 = ∫ 𝑦2
ℎ 2⁄

−ℎ 2⁄

𝑏. 𝑑𝑦 = 𝑏∫ 𝑦2
ℎ 2⁄

−ℎ 2⁄

𝑑𝑦 = |
𝑦3

3
|
−ℎ 2⁄

ℎ 2⁄

=
1

12
𝑏ℎ3 

∴ 𝐼𝑦 =
1

12
ℎ𝑏3 

b. At the xb-axis  

  

𝒚

𝒙  𝒙

x

y

c

 
 

− 
 

 

𝒚
 𝒚

y

x

 

 𝒐

xb
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∴ 𝐼𝑥𝑏 = 𝐼𝑥 + 𝐴𝑑2  

∴ 𝐼𝑥𝑏 =
1

12
𝑏ℎ3 + 𝑏. ℎ. (

ℎ

2
)
2

=
1

3
𝑏ℎ3 

c. At the z-axis  

∴ 𝐽𝐶 = 𝐼𝑥 + 𝐼𝑌 =
1

12
𝑏ℎ3 +

1

12
ℎ𝑏3 =

1

12
[ℎ𝑏3 + 𝑏ℎ3] 

 

Example:3 

Determine the moment of inertia of the cross-sectional 

area of the channel with respect to the y axis. Determine 

the radius of gyration of an area about y axis 

 

 Solution:   

𝑑𝐼𝑦 = 𝑥2𝑑𝐴 

∴ 𝐼𝑦 = ∫ 𝑥2𝑑𝐴
𝑥2

𝑥1

 

Part: (1) 

𝐼𝑦1 =
1

12
ℎ𝑏3 =

1

12
(50)(200)3 = 33333333.3 𝑚𝑚4 

 

Part: (2) 

𝐼𝑦2 =
1

12
ℎ𝑏3 =

1

12
(300)(50)3 = 3125000 𝑚𝑚4 

 

Part: (3) 

𝐼𝑦3 =
1

12
ℎ𝑏3 =

1

12
(50)(200)3 = 33333333.3 𝑚𝑚4 

∴ 𝐼𝑦 = 𝐼𝑦1 + 𝐼𝑦2 + 𝐼𝑦3 = 33333333.3 + 3125000 + 33333333.3 = 69791666.6 𝑚𝑚4

= 69.8 × 106 𝑚𝑚4 

The radius of gyration: 

𝑘𝑦 = √
𝐼𝑦

𝐴
= √

69791666.6

35000
= 44.65 𝑚 

 

x

y

200

50

50

3
0

0

c

1

2

3



  Part I: Statics  Engineering Mechanics 1405-211 

 

Page | 50  
Dr-Mamdouh El-Elamy 

Example:4 

Determine the moments of inertia of the rectangular area about 

the centroidal x0- and y0-axes, the centroidal polar axis z0 

through C, the x-axis, and the polar axis z through O. 

Solution: 

For the calculation of the moment of inertia Ix0 about the x0-

axis, a horizontal strip of area b dy is chosen so that all 

elements of the strip have the same y-coordinate. Thus, 

𝐼𝑥0 = ∫𝑦2 𝑑𝐴 

Where a horizontal strip of area dA = b dy 

𝐼𝑥0 = ∫ 𝑦2

+ℎ 2⁄

−ℎ 2⁄

𝑏 𝑑𝑦 = 𝑏 |
𝑦3

3
|
−ℎ 2⁄

ℎ 2⁄

=
1

12
𝑏ℎ3 

By interchange of symbols, the moment of inertia about the centroidal y0-axis is 

𝐼𝑦0 = ∫ 𝑥2

+𝑏 2⁄

−𝑏 2⁄

ℎ 𝑑𝑥 = ℎ |
𝑥3

3
|
−𝑏 2⁄

𝑏 2⁄

=
1

12
ℎ𝑏3 

The centroidal polar moment of inertia is 

𝐼𝑧0 = 𝐼𝑥0 + 𝐼𝑦0 

=
1

12
𝑏ℎ3 +

1

12
ℎ𝑏3 =

1

12
𝑏ℎ(𝑏2 + ℎ2) =

1

12
𝐴(𝑏2 + ℎ2) 

By the parallel-axis theorem the moment of inertia about the x-axis is 

𝐼𝑥 = 𝐼𝑥0 + 𝐴𝑑2 

=
1

12
𝑏ℎ3 + (𝑏. ℎ) (

ℎ

2
)
2

=
1

3
𝑏ℎ3 =

1

3
𝐴ℎ2 

We also obtain the polar moment of inertia about O by the parallel-axis theorem, which 

gives us 

𝐼𝑧 = 𝐼𝑧0 + 𝐴𝑑2 

=
1

12
𝐴(𝑏2 + ℎ2) + (𝑏. ℎ) [(

ℎ

2
)
2

+ (
ℎ

2
)

2

] =
1

3
𝑏ℎ(𝑏2 + ℎ2) =

1

3
𝐴(𝑏2 + ℎ2) 

 

 


