
Course Info

Course Title: Compiler Construction
Course Code: CPCS302
Course Pre-requisite:CPCS301

Instructor Name: Dr. Rabie Ahmed, 

Instructor Email: rabie.ahmed@nbu.edu.sa

Meeting:  Sunday:  08:00 – 10:30 

Monday: 08:00 – 10:30 

Room:                 C107

mailto:rabie.ahmed@nbu.edu.sa


Course Objective & Description

2.  Course Description 

This course provides students with an investigation of compiler

theory, design, and construction. It also introduces basic concepts of

different phases of a compiler, which qualifies students to understand

contents of this course. Topics include Compiler & Interpreter,

Compilation process, Front-End and Back-End Phases of a compiler,

The role of the lexical analyzer, Specification & Recognition of tokens,

The role of the Syntax analyzer, Context-free grammars, Syntax-

Directed Translation, Top-down & Bottom-up parsing Techniques,

Finite Automata, DFA & NFA, converting Regular Expressions to

Automata,

1. Course Objective

The Main Objective of this course is to familiarize the student with
basic concepts of different phases of a of compiler theory, design, and
construction.



Course Learning Outcomes (CLOs)

CLOs 
Aligned 

PLOs 

1 Knowledge and Understanding:  

1.1 Describe the difference between compilers and interpreters in 

compilation process. 

K1 

1.2 List the phases of a compiler construction including front end and back 

end phases. 

K2 

2 Skills:  

2.1 Analyze the regular expressions of the specific tokens for specifying a 

regular language. 

S1 

2.2 Design a context free grammar as a syntax rule of a simple language. S2 

2.3 Apply algorithms related to front end phases of a compiler to develop the 

scanner and the parser of a simple language using current techniques and 

generator tools. 

S3, S5 

3 Values:  

3.1 Function effectively in teams to accomplish a common goal V2 

 



Participation:(W1-W12) 5%

Quizzes:(W2,W8) 5%

Assignments:(W4,W10) 10%

LAB Tasks:(W4-W11)              10%

LAB Exam:(W12)                    10%

Mid-Term Exam:(W6) 20%

Final Exam:(W13) 40%

TOTAL: 100%

Course Assessment Tools



Course Learning Resources

Required 

Textbooks

1. Alfred Aho, Monica S. Lam, Ravi Sethi, and 

Jeffery D. Ullman "Compilers: Principles, 

Techniques and Tools" Addison Wesley, 3rd

edition, 2009.

Essential 

References 

Materials

1. Cooper and Torczon. “Engineering a 

Compiler”, Maurgan Kaufman, 2nd edition, 

2011. 

2. Dick Grune, Kees van Reeuwijk, Henri E. Bal, 

Ceriel J.H. Jacobs, Koen Langendoen. “Modern 

Compiler Design”, Springer, 2nd edition, 2012.

Electronic 

Materials

1. Blackboard System: https://lms.nbu.edu.sa/

2. Northern Border University Electronic Library:

https://www.nbu.edu.sa/AR/Deanships/Library_Is

sues

3. Saudi Digital Library (SDL): 

https://portal.sdl.edu.sa/english/

https://lms.nbu.edu.sa/
https://www.nbu.edu.sa/AR/Deanships/Library_Issues
https://portal.sdl.edu.sa/english/


Compiler

Compiler is a program that reads  

a program in one language 

(the source language) 

and translates it into an equivalent 

program in another language 

(the target language)



Interpreter

Interpreter is a program that reads a program 
and produces the results of running that 
program on a given inputs



Compiler vs Interpreter

✓ The machine-language target 
program produced by a compiler is 
usually much faster than an 
interpreter at mapping inputs to 
outputs . 

✓ An interpreter, however, can usually 
give better error diagnostics than a 
compiler, because it executes the 
source program statement by 
statement.



Int x ;
Int z ;
X := 10 ;
Y := 20 ;
Z := x + y ;
Printf << x ;
Printf << y ;
Printf << z ;

Compiler Interpreter



Hybrid Compiler

Hybrid Compiler 

combines compilation 

and interpretation, 

source program may 

first be compiled into 

an intermediate form 

called bytecodes. 

The bytecodes are 

then interpreted by     

a virtual machine.



Compilation Process

H L L

H L L

M L L

L L L

L L L



Front-end, Back-end division

• Front end maps source code into IR

• Back end maps IR into target machine code

Front end
(Analysis)

Source
code

Machine
code

Errors
Handler

IR
Back end

(Synthesis)

Symbol
Table



The Phases of a Compiler
•A compiler operates in phases, each of which transforms 

the source program from one representation to another. 

•The first three phases, Lexical analysis, Syntax analysis, 

and Semantic analysis form analysis portion of a compiler 

while the last three phases Intermediate code generation, 

Code optimization, and Code generation form synthesis 

portion of a compiler.

•The analysis part creates an intermediate representation  

from the source program. The synthesis part constructs the 

target program from the intermediate representation. The 

analysis part is often called the front end of the compiler and 

the synthesis part is the back end.

•Two other activities, Symbol table management and Error 

handling are shown interacting with the phases.



The Phases of a Compiler



Examples on Phases of a Compiler



The Phases of a Compiler

1. Lexical Analysis

•The first phase of a compiler is called lexical

analysis or scanning. The lexical analyzer

reads the stream of characters making up the

source program and groups the characters into

meaningful sequences called lexemes.

•For each lexeme, the lexical analyzer

produces as output a token of the form

<token-name, attribute-value>



The Phases of a Compiler

2. Syntax Analysis

•The second phase of the compiler is syntax

analysis or parsing. The parser uses the first

components of the tokens produced by the

lexical analyzer to create a tree-like

intermediate representation that depicts the

grammatical structure of the token stream.

•A typical representation is a syntax tree in

which each interior node represents an

operation and the children of the node

represent the arguments of the operation



The Phases of a Compiler

3. Semantic Analysis

•The semantic analyzer uses the syntax tree

and the information in the symbol table to

check the source program for semantic

consistency with the language definition.

•It also gathers type information and saves it in

either the syntax tree or the symbol table.

•An important part of semantic analysis is type

checking, where the compiler checks that each

operator has matching operands.



The Phases of a Compiler

4. Intermediate Code Generation

•In the process of translating a source program into

target code, a compiler may construct one or more

intermediate representations, which can have a

variety of forms, like, Syntax Tree or Decorated Tree

or machine-like intermediate representation.

•This intermediate representation should have two

important properties:

1. it should be easy to produce from semantic phase

2. it should be easy to translate into target machine.



The Phases of a Compiler

5. Code Optimization

•The machine-independent code-optimization phase

attempts to improve the intermediate code so that

better target code will result.

•Usually better means faster, but other objectives

may be desired, such as shorter code, or target code

that consumes less power.



The Phases of a Compiler

6. Code Generation

•The code generator takes as input an intermediate

representation of the source program and maps it

into the target language. If the target language is

machine code, registers or memory locations are

selected for each of the variables used by the

program.

•Then, the intermediate instructions are translated

into sequences of machine instructions that perform

the same task.



The Phases of a Compiler
7. Symbol-Table Management

•An essential function of a compiler is to record the

variable names used in the source program and

collect information about various attributes of each

name. These attributes may provide information

about the storage allocated for a name, its type, its

scope

•The symbol table is a data structure containing a

record for each variable name, with fields for the

attributes of the name. The data structure should be

designed to allow the compiler to find the record for

each name quickly and to store or retrieve data from

that record quickly.



The Phases of a Compiler
8. Error Handling

•Each phase can encounter errors. However after detecting

an error, a phase must somehow deal with that error, so that

compilation can proceed, allowing further errors in the

source program to be detected. The syntax and semantic

analysis phases usually handle a large fraction of the errors

detectable by the compiler.

•The lexical phase can detect errors where the characters

remaining in the input do not form any token of the

language. Errors where the token stream violates the

structure rules of the language are determined by the syntax

analysis phase. During semantic analysis the compiler

detects constructs that have a right syntactic structure but no

meaning to the operation involved.



Traditional three pass compiler

• Code improvement analyzes and change IR

• Goal is to reduce runtime

Front
end

Source
code

Machine
code

errors

IR Back 
end

Middle
end

IR

Symbol



The Grouping of Phases into Passes

The discussion of phases deals with the logical
organization of a compiler.
In an implementation, activities from several
phases may be grouped together into a pass
that reads an input file and writes an output
file.
For example, the front-end phases of lexical
analysis, syntax analysis, semantic analysis, and
intermediate code generation might be grouped
together into one pass.



Compiler-Construction Tools
Some commonly used compiler-construction tools include
1. Scanner generators that produce lexical analyzers
2. Parser generators that automatically produce syntax 

analyzers
3. Syntax-directed translation engines that produce collections 
of routines for walking a parse tree and generating 
intermediate code.
4. Data-flow analysis is a key part of code optimization.
5. Code-generator generators that produce a code 
6. Compiler-construction toolk2ts that provide an integrated 
set of routines for constructing various phases of a compiler.


	Slide 1
	Slide 2
	Slide 3: Course Learning Outcomes (CLOs)
	Slide 4: Course Assessment Tools
	Slide 5: Course Learning Resources
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Front-end, Back-end division
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Traditional three pass compiler
	Slide 25: The Grouping of Phases into Passes
	Slide 26: Compiler-Construction Tools

